UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

LIST OF REPORTS PERTAINING TO GROUND WATER IN OREGON

Compiled by
B. L. Foxworthy

PROPERTY OF LIBRARY
OREGON DEPT. GEOL. & MINERAL INDUST.
STATE OFFICE BLDG., PORTLAND, OREG.

Prepared in cooperation with the Oregon State Engineer
Not reviewed for conformance with the editorial standards of the Geological Survey
Portland, Oregon
May 1962
UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

LIST OF REPORTS PERTAINING TO GROUND WATER IN OREGON

Compiled by
B. L. Foxworthy

Prepared in cooperation with the Oregon State Engineer

Not reviewed for conformance with the editorial standards of the Geological Survey

Portland, Oregon

May 1962
LIST OF REPORTS PERTAINING TO GROUND WATER IN OREGON

By B. L. Foxworthy

The following list represents a compilation of the published reports and the known open-file documents that deal primarily or largely with ground water. Reports on which work is now underway (1961) by the Ground Water Branch of the Geological Survey also are listed. This list was revised from a similar list compiled by R. C. Newcomb (1956).

Excluded from the list are many published and unpublished works that make only secondary reference to ground water, though they give some ground-water data as a minor part of their subject matter. Among such excluded works are topographic maps, reports on surface-water resources, reports on land- and mine-drainage situations, snow- and weather-data compilations, soil surveys, geologic reports, and many technical papers that deal mainly with subjects such as silviculture, farming, and engineering, but touch in part on ground-water occurrences.

Figure 1 shows the location and extent of the areas covered by completed reports that describe the ground-water conditions in specific areas. A number in parentheses, as (3), following the listed titles of an areal report refers to its designation on figure 1.

Areas in which ground-water studies are currently in progress are shown in figure 2.
Figure 1.-- Map of Oregon showing areas of completed areal ground-water studies as of December 1961.

Numbers shown on map refer to reports listed in the appendix.
Figure 2.--Map of Oregon showing areas of current areal ground-water studies as of December 1961.

A. East Portland
B. French Prairie-Mission Bottom
C. Salem-Molalla slope
D. Eola-Amity Hills
E. Salem Heights artificial recharge
F. Rogue River basin
G. Fort Rock Basin
H. Dalles City artificial recharge

U. S. Geological Survey Geologic Atlas

103 Lindgren, Waldemar, and Drake, N. F., 1904, Description of the Nampa quadrangle, Idaho-Oregon: 5 p., 2 maps.

U. S. Geological Survey Professional Papers

424-C Foxworthy, B. L., 1961, Deformed basaltic caprock as an aquifer in Cow Valley, Oregon: Short paper, art. 203, 2 p., 1 fig.

424-B Hampton, E. R., 1961, Ground water from coastal dune and beach sands: Short paper, art. 85, p. 204-205, 1 fig.

Newcomb, R. C., 1961, Structural barrier reservoirs of ground water in the Columbia River Basalt: Short paper, art. 88, p. 213-215, 1 fig.

383-A Newcomb, R. C., Storage of ground water behind subsurface dams in the Columbia River Basalt, Washington, Oregon, and Idaho: 15 p., 12 figs.

Fuller, M. L., 1905, Bibliographic review and index of papers relating to underground waters, 1879-1904: 128 p.

Newcomb, R. C., 1961, Ground water in the western part of Cow Creek and Soldier Creek grazing units, Malheur County, Oregon: p. 159-172, figs. 26-27.

Piper, A. M., 1932, Geology and ground-water resources of The Dalles region, Oregon: p. 107-189, 9 pls.

597-D Stearns, H. T., 1928, Geology and water resources of the upper McKenzie Valley, Oregon: p. 171-188, 3 pls.

231 ———, 1909, Geology and water resources of the Harney Basin region, Oregon: 93 p., 5 pls.

Measurements of water level and artesian pressure in the State of Oregon are given in the following water-supply papers ("Water levels and artesian pressures in observation wells in the United States, Part 5, Northwestern States"); the year of measurement is in parentheses:

- 777 (to 1935) 940 (1941) 1100 (1947) 1269 (1953)
- 817 (1936) 948 (1942) 1130 (1948) 1325 (1954)
- 840 (1937) 990 (1943) 1160 (1949) 1408 (1955)
- 845 (1938) 1020 (1944) 1169 (1950)
- 886 (1939) 1027 (1945) 1195 (1951)
- 910 (1940) 1075 (1946) 1225 (1952)

Measurements of the flow of ground water from some prominent springs are published in the water-supply papers containing stream-discharge records.
Reports in Preparation as Water-Supply Papers

W.S.P.
No.

1619-O Brown, S. G., Occurrence and use of ground water in (23)
the west-side business district of Portland,
Oregon: (Prepared in cooperation with the Oregon
State Engineer.)

1619-D Brown, S. G., and Newcomb, R. C., Ground-water resources (14)
of the coastal dune-sand area north of Coos
Bay, Oregon:

1619-M __________, Ground-water resources of Cow Valley, Malheur (13)
County, Oregon: (Prepared in cooperation with
the Oregon State Engineer.)

1539-K Hampton, E. R., Ground water in the coastal dune area (20)
near Florence, Oregon: (Prepared in cooperation
with the city of Florence.)

1597 Hampton, E. R., and Brown, S. G., Geology and ground-
water resources of the upper Grande Ronde River (9)
basin, Union County, Oregon: (Prepared in co-
operation with the Oregon State Engineer.)

 Hart, D. H., and Newcomb, R. C., Ground water of the (10)
Tualatin Valley, Oregon: (Prepared in coopera-
tion with the Oregon State Engineer.)
Reports in Preparation as Water-Supply Papers—Continued

W.S.P.
No.

1620 Hogenson, G. M., Geology and ground-water resources (11) of the Umatilla River Basin area, Oregon:

1649 Phillips, K. N., Newcomb, R. C., and Swenson, H. A., Water for Oregon:

1619-P Robinson, J. W., and Price, Don, Ground water in the (17) Prineville area, Crook County, Oregon: (Prepared in cooperation with the Oregon State Engineer.)

Publications of the State of Oregon and Other Agencies

Oregon State Engineer Biennial reports for the years 1905-06, 1907-08, 1909-10, 1915-16, 1920-22, 1936-38, and others. (Contain some information on location, history, water levels in, and use of wells and springs.)

Publications of the State of Oregon and Other Agencies—Continued

Journal Articles

Open-File Reports

Hart, Donald H., 1954, List of ground-water sources in Oregon known to yield mineralized water (over 1,000 ppm dissolved solids or 60 percent sodium): U. S. Geol. Survey, typewritten rept. (Prepared in cooperation with the Oregon State Engineer), 14 p.
Open-File Reports--Continued

Newcomb, R. C., 1959, Ground water of the Columbia Basin:
Newcomb, R. C., and Hart, D. H., 1953, Preliminary report on
the ground-water resources of the Klamath River basin,
10 pls.
Piper, A. M., and others, 1937, Water resources and watershed
protection problems of Oregon municipalities: Oregon Plan.
Board Rept., Portland, Oregon, 26 p.
Robinson, J. W., 1944, A canvass of public water supplies of the
principal communities in Oregon: U. S. Geol. Survey type-
written rept. (Prepared in cooperation with the Oregon State Engineer.)
Trauger, F. D., 1948, Preliminary report of ground-water occurrence
near Beaverton, Washington County, Oregon: U. S. Geol.
Survey typewritten rept. (Prepared in cooperation with the Oregon State Engineer), 26 p., 5 pls.
, 1950, Ground-water resources of Baker Valley, Baker (18)
County, Oreg.: U. S. Geol. Survey dupl. rept. (Pre-
pared in cooperation with the Oregon State Engineer),
100 p., 15 pls.
Open-File Reports--Continued

Trauger, F. D., 1950, Basic ground-water data in Lake County, Oregon: U.S. Geol. Survey dupl. rept. (Prepared in cooperation with the Oregon State Engineer), 287 p., 26 pls.

Reports in Review for Publication by the Geological Survey

Foxworthy, B. L., and Bryant, C. T., On artificial recharge through a well tapping basalt aquifers at The Dalles, Oregon. (Prepared in cooperation with Dalles City.)

Hampton, E. R., On the geology and ground water of the Fort Rock Basin, Lake County, Oregon. (Prepared in cooperation with the Oregon State Engineer.)

Hogenson, G. M., On ground water of the East Portland area, Oregon. (Prepared in cooperation with the Oregon State Engineer.)

Newcomb, R. C., On ground water in subareas of the Snake River basin in Oregon.

Young, R. A., On ground-water resources of the Rogue River basin, Oregon.
Memorandum

To: Director, Geological Survey

From: Chief, Conservation Division

Subject: Review of withdrawals, Deschutes Basin, Oregon

A recently completed report, Review of waterpower classifications and withdrawals, Deschutes River basin, Oregon, by J. L. Colbert and L. L. Young, and a draft of a Geological Survey release placing it in the open file are transmitted herewith for your approval.

This report has been reviewed by all offices of the Branch of Waterpower Classification, by the Portland, Oregon, office of the Water Resources Division, by interested Federal, State, and county agencies in Oregon, and by the local private utility companies. Many of the reviewers submitted suggestions for improving the report and these improvements have been made. The Federal, State, and county reviewers all requested copies of the completed report, many of them stating that it would be helpful in their own studies within the basin. It seems appropriate, therefore, that the report be placed in the open file.

[Signature]
Chief, Conservation Division

Enclosures
GEOLOGICAL SURVEY

For Release MARCH 15, 1969

The Geological Survey is releasing in open files the following report.

Review of waterpower classifications and withdrawals
Deschutes River basin, Oregon, by J. L. Colbert, and L. L Young.

Copies are available for consultation at the following places:
Geological Survey Library, 1033 General Services Building, Washington, D.C. 20242; Department of the Interior Library, 1002 N. E. Holladay, Portland, Oregon 97208; Central Public Library, 801 S.W. 10th Ave., Portland, Oregon 97205; and Geological Survey offices, Rm. 204, 830 N.E. Holladay St., Portland, Oregon 97208.

X X X X
COMPOSITION OF MINERAL WATERS FROM THE ASHLAND DISTRICT

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Chemical Symbol</th>
<th>"Ashland Lithia"</th>
<th>"Old Lithia"</th>
<th>"New Lithia"</th>
<th>"Near Ashland Lithia"</th>
<th>"Ashland Salophar"</th>
<th>"White Salophar"</th>
<th>"McKeel Salophar"</th>
<th>"Independence Salophar"</th>
<th>"Wheatland Salophar"</th>
<th>"Spelt Marcus Sulphur"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>Cl</td>
<td>28.84</td>
<td>22.08</td>
<td>21.00</td>
<td>25.62</td>
<td>8.08</td>
<td>12.48</td>
<td>31.30</td>
<td>13.00</td>
<td>15.43</td>
<td>15.43</td>
</tr>
<tr>
<td>Bromine</td>
<td>Br</td>
<td>.02</td>
<td>.02</td>
<td>.02</td>
<td>.01</td>
<td>.01</td>
<td>.05</td>
<td>.02</td>
<td>.05</td>
<td>.02</td>
<td>.02</td>
</tr>
<tr>
<td>Sulphuric acid radical</td>
<td>SO₄</td>
<td>.84</td>
<td>.64</td>
<td>.64</td>
<td>3.93</td>
<td>3.89</td>
<td>4.26</td>
<td>7.59</td>
<td>1.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen sulphide</td>
<td>H₂S</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>3.33</td>
<td>3.89</td>
<td>4.26</td>
<td>7.59</td>
<td>1.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonic acid radical</td>
<td>CO₂</td>
<td>31.24</td>
<td>44.81</td>
<td>44.84</td>
<td>38.41</td>
<td>61.33</td>
<td>23.87</td>
<td>5.34</td>
<td>33.94</td>
<td>40.57</td>
<td>43.11</td>
</tr>
<tr>
<td>Bicarbonate acid radical</td>
<td>HCO₃</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>23.93</td>
<td>24.95</td>
<td>22.63</td>
<td>7.91</td>
<td>17.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitric acid radical</td>
<td>NO₃</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.01</td>
<td>.01</td>
<td>.05</td>
<td>.01</td>
<td>.05</td>
<td>.03</td>
<td>.03</td>
</tr>
<tr>
<td>Nitrous acid radical</td>
<td>NO₂</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.01</td>
<td>.01</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
</tr>
<tr>
<td>Phosphoric acid radical</td>
<td>PO₄</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
</tr>
<tr>
<td>Arsenic acid radical</td>
<td>As₂O₅</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beric acid radical</td>
<td>H₂BO₇</td>
<td>2.66</td>
<td>2.66</td>
<td>2.66</td>
<td>Trace</td>
<td>Trace</td>
<td>2.10</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
</tr>
<tr>
<td>Metaboric acid radical</td>
<td>B₂O₇</td>
<td>30.73</td>
<td>28.63</td>
<td>22.93</td>
<td>23.53</td>
<td>24.99</td>
<td>22.63</td>
<td>7.91</td>
<td>17.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>Na</td>
<td>30.73</td>
<td>28.63</td>
<td>22.93</td>
<td>23.53</td>
<td>24.99</td>
<td>22.63</td>
<td>7.91</td>
<td>17.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>K</td>
<td>1.64</td>
<td>.83</td>
<td>1.17</td>
<td>2.91</td>
<td>4.41</td>
<td>24.05</td>
<td>28.54</td>
<td>24.05</td>
<td>.24</td>
<td>.24</td>
</tr>
<tr>
<td>Lithium</td>
<td>Li</td>
<td>.12</td>
<td>.07</td>
<td>.09</td>
<td>.01</td>
<td>.03</td>
<td>.01</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
</tr>
<tr>
<td>Ammonium</td>
<td>NH₃</td>
<td>.01</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca</td>
<td>4.73</td>
<td>3.23</td>
<td>3.05</td>
<td>3.02</td>
<td>2.06</td>
<td>2.71</td>
<td>.64</td>
<td>1.53</td>
<td>8.37</td>
<td>5.44</td>
</tr>
<tr>
<td>Barium</td>
<td>Ba</td>
<td>.02</td>
<td>.02</td>
<td>.02</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Mg</td>
<td>2.28</td>
<td>3.09</td>
<td>2.58</td>
<td>1.82</td>
<td>2.24</td>
<td>.38</td>
<td>.38</td>
<td>.16</td>
<td>.23</td>
<td>.23</td>
</tr>
<tr>
<td>Iron</td>
<td>Fe</td>
<td>.09</td>
<td>.09</td>
<td>.09</td>
<td>.00</td>
<td>.00</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>Manganese oxide</td>
<td>Mn₂O₇</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.11</td>
<td>.02</td>
<td>.02</td>
<td>None</td>
<td>None</td>
<td>1.48</td>
<td>.09</td>
</tr>
<tr>
<td>Iron oxide</td>
<td>Fe₂O₃</td>
<td>.05</td>
<td>.05</td>
<td>.05</td>
<td>.50</td>
<td>.20</td>
<td>.20</td>
<td>None</td>
<td>None</td>
<td>1.48</td>
<td>.09</td>
</tr>
<tr>
<td>Alumina</td>
<td>Al₂O₃</td>
<td>1.52</td>
<td>.00</td>
<td>.05</td>
<td>.11</td>
<td>.02</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>1.48</td>
<td>.09</td>
</tr>
<tr>
<td>Titanium oxide</td>
<td>TiO₂</td>
<td>.81</td>
<td>.73</td>
<td>.73</td>
<td>.50</td>
<td>.20</td>
<td>.20</td>
<td>.20</td>
<td>.20</td>
<td>.20</td>
<td>.20</td>
</tr>
<tr>
<td>Oxygen</td>
<td>O</td>
<td>100.00</td>
</tr>
<tr>
<td>Salinity, parts per million</td>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>

Reported as SiO₂.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>Cl</td>
<td>28.44</td>
<td>34.60</td>
<td>22.08</td>
<td>36.06</td>
<td>21.70</td>
<td>42.42</td>
<td>25.62</td>
<td>42.00</td>
<td>8.08</td>
</tr>
<tr>
<td>Bromine</td>
<td>Br</td>
<td>.02</td>
<td></td>
<td>.02</td>
<td>None</td>
<td>.02</td>
<td>.16</td>
<td>.113</td>
<td>.01</td>
<td>.25</td>
</tr>
<tr>
<td>Iodine</td>
<td>I</td>
<td>.02</td>
<td></td>
<td>None</td>
<td>.02</td>
<td>.02</td>
<td>.02</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
</tr>
<tr>
<td>Sulphuric acid radical</td>
<td>SO₄</td>
<td>.82</td>
<td></td>
<td>3.29</td>
<td>trace</td>
<td>3.38</td>
<td>18.59</td>
<td>61.83</td>
<td>4.56</td>
<td>61.83</td>
</tr>
<tr>
<td>Carbonic acid radical</td>
<td>CO₂</td>
<td>30.14</td>
<td>19.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bicarbonate radical</td>
<td>HCO₃</td>
<td>44.81</td>
<td>29.18</td>
<td>44.64</td>
<td></td>
<td>19.28</td>
<td>38.41</td>
<td>61.83</td>
<td>4.56</td>
<td></td>
</tr>
<tr>
<td>Nitric acid radical</td>
<td>NO₃</td>
<td>.00</td>
<td></td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
</tr>
<tr>
<td>Nitrous acid radical</td>
<td>NO₂</td>
<td>.00</td>
<td></td>
<td>trace</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
</tr>
<tr>
<td>Phosphoric acid radical</td>
<td>PO₄</td>
<td>.00</td>
<td></td>
<td>.00</td>
<td>none</td>
<td>.00</td>
<td>.00</td>
<td>trace</td>
<td>trace</td>
<td>9.6</td>
</tr>
<tr>
<td>Arsenic acid radical</td>
<td>AsO₄</td>
<td>.00</td>
<td></td>
<td></td>
<td>trace</td>
<td>.05</td>
<td></td>
<td>trace</td>
<td>trace</td>
<td></td>
</tr>
<tr>
<td>Metaboric acid radical</td>
<td>BO₂</td>
<td>2.66</td>
<td></td>
<td>2.87</td>
<td>trace</td>
<td>.05</td>
<td>.05</td>
<td>trace</td>
<td>trace</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>Na</td>
<td>30.73</td>
<td>37.29</td>
<td>22.63</td>
<td>18.88</td>
<td>22.29</td>
<td>27.39</td>
<td>27.62</td>
<td>24.99</td>
<td>30.12</td>
</tr>
<tr>
<td>Potassium</td>
<td>K</td>
<td>1.54</td>
<td>.53</td>
<td>.83</td>
<td>.25</td>
<td>1.17</td>
<td>.68</td>
<td>2.91</td>
<td>.78</td>
<td>.41</td>
</tr>
<tr>
<td>Lithium</td>
<td>Li</td>
<td>.12</td>
<td>.01</td>
<td>.07</td>
<td>1.05</td>
<td>.09</td>
<td>.16</td>
<td>.01</td>
<td>.03</td>
<td>.02</td>
</tr>
<tr>
<td>Ammonium</td>
<td>NH₄</td>
<td>.01</td>
<td></td>
<td>.01</td>
<td>trace</td>
<td>.05</td>
<td></td>
<td>trace</td>
<td>trace</td>
<td>.09</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca</td>
<td>4.73</td>
<td>3.64</td>
<td>3.23</td>
<td>6.72</td>
<td>3.05</td>
<td>3.69</td>
<td>6.03</td>
<td>2.08</td>
<td>3.80</td>
</tr>
<tr>
<td>Strontium</td>
<td>Sr</td>
<td>1.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>trace</td>
<td>trace</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>Ba</td>
<td>.82</td>
<td></td>
<td>.02</td>
<td>.02</td>
<td>.12</td>
<td>.09</td>
<td>.01</td>
<td>.19</td>
<td>1.98</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Mg</td>
<td>2.28</td>
<td></td>
<td>3.09</td>
<td>3.12</td>
<td>2.58</td>
<td>3.92</td>
<td>3.41</td>
<td>.83</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Fe</td>
<td>.01</td>
<td></td>
<td>.09</td>
<td>none</td>
<td>.01</td>
<td></td>
<td>trace</td>
<td>trace</td>
<td>.01</td>
</tr>
<tr>
<td>Manganese oxide</td>
<td>MnO₂</td>
<td>.00</td>
<td></td>
<td></td>
<td>.00</td>
<td></td>
<td>.07</td>
<td>.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron Oxide</td>
<td>FeO₃</td>
<td>.17</td>
<td></td>
<td></td>
<td></td>
<td>.02</td>
<td>.11</td>
<td>trace</td>
<td>.02</td>
<td>.02</td>
</tr>
<tr>
<td>Alumina</td>
<td>Al₂O₃</td>
<td>1.52</td>
<td></td>
<td>.00</td>
<td>.05</td>
<td>.05</td>
<td>.02</td>
<td>.14</td>
<td>.50</td>
<td>.20</td>
</tr>
<tr>
<td>Silica</td>
<td>SiO₂</td>
<td>.69</td>
<td>.81</td>
<td>1.03</td>
<td>.73</td>
<td>.17</td>
<td>.03</td>
<td>.14</td>
<td>.50</td>
<td>.20</td>
</tr>
<tr>
<td>Oxygen</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.01</td>
<td></td>
<td>trace</td>
<td></td>
<td>.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salinity, parts per million</th>
<th>100.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8275.</td>
<td>7639.</td>
<td>10972.</td>
<td>1204.</td>
<td>9567.</td>
<td>15238.</td>
<td>9153.</td>
<td>1200.</td>
<td>6941.</td>
<td>9022.</td>
</tr>
</tbody>
</table>