SILVER PEAK GROUP
Sections 23 & 26 T31S, R6W.
Douglas County

Samples:

Sample 2: 4.1% Zn, 0.01 oz Ag, Cu 0.01
Sample 3: 3.5% Zn, 0.01 oz Ag, Cu 0.01
Sample 4: 2.5% Zn, 0.01 oz Ag, Cu 0.01
Sample 5: 2.0% Zn, 0.01 oz Ag, Cu 0.01
Sample 6: 1.5% Zn, 0.01 oz Ag, Cu 0.01
Sample 7: 1.0% Zn, 0.01 oz Ag, Cu 0.01
Sample 8: 0.5% Zn, 0.01 oz Ag, Cu 0.01
Sample 9: 0.0% Zn, 0.01 oz Ag, Cu 0.01
Sample 10: 7 feet
Zn: 7.5%
Ag: 0.3 oz
Cu: 5.15%
Production and Assays:

Silver Peak Mine

<table>
<thead>
<tr>
<th>Width</th>
<th>Zn</th>
<th>Au</th>
<th>Ag</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>5"</td>
<td>1.3</td>
<td>0.4</td>
<td>0.4</td>
<td>2.5</td>
</tr>
<tr>
<td>5'</td>
<td>0.6</td>
<td>0.2</td>
<td>0.1</td>
<td>1.1</td>
</tr>
<tr>
<td>5'</td>
<td>9.2</td>
<td>0.1</td>
<td>1.1</td>
<td>2.5</td>
</tr>
<tr>
<td>15'</td>
<td>1.2</td>
<td>0.3</td>
<td>0.3</td>
<td>2.1</td>
</tr>
<tr>
<td>6'</td>
<td>0.8</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>5'6"</td>
<td>0.9</td>
<td>0.5</td>
<td>0.9</td>
<td>4.05</td>
</tr>
<tr>
<td>7</td>
<td>4.5</td>
<td>0.3</td>
<td>4.5</td>
<td>5.13</td>
</tr>
</tbody>
</table>

Production figures:

<table>
<thead>
<tr>
<th></th>
<th>1926</th>
<th>1928</th>
<th>1929</th>
<th>1930</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>389</td>
<td>989</td>
<td>1666</td>
<td>269</td>
</tr>
</tbody>
</table>

Umpqua Consolidated

Production

<table>
<thead>
<tr>
<th></th>
<th>1936</th>
<th>1937</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1001</td>
<td>2328</td>
</tr>
</tbody>
</table>
SAMPLE RESULTS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (ppb)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>As (ppm)</th>
<th>Hg (ppb)</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>27289</td>
<td>35</td>
<td>0.2</td>
<td>210</td>
<td>18</td>
<td>360</td>
<td>8</td>
<td>250</td>
<td>10 ft.</td>
</tr>
<tr>
<td>27290</td>
<td>25</td>
<td>0.5</td>
<td>245</td>
<td>35</td>
<td>460</td>
<td>15</td>
<td>260</td>
<td>10</td>
</tr>
<tr>
<td>27291</td>
<td>15</td>
<td>0.4</td>
<td>168</td>
<td>27</td>
<td>300</td>
<td>12</td>
<td>155</td>
<td>10</td>
</tr>
</tbody>
</table>

Notes by RCP

- Silver Peak Area
- Mine Road Cut in SW NE 13-31-6
- Scale: 1" = 20'
- Date: 10/27/76
SAMPLE RESULTS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au</th>
<th>Ag</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>As</th>
<th>Hg</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>27278</td>
<td>45</td>
<td>0.2</td>
<td>2600</td>
<td>11</td>
<td>34</td>
<td>12</td>
<td>40</td>
<td>10 ft.</td>
</tr>
<tr>
<td>27279</td>
<td>100</td>
<td>0.2</td>
<td>330</td>
<td>11</td>
<td>93</td>
<td>16</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>27280</td>
<td>5</td>
<td>0.2</td>
<td>235</td>
<td>10</td>
<td>125</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>27281</td>
<td>15</td>
<td>0.2</td>
<td>330</td>
<td>9</td>
<td>101</td>
<td>5</td>
<td>15</td>
<td>5.0</td>
</tr>
<tr>
<td>27282</td>
<td>5</td>
<td>0.2</td>
<td>385</td>
<td>8</td>
<td>121</td>
<td>4</td>
<td>-5</td>
<td>10</td>
</tr>
<tr>
<td>27283</td>
<td>5</td>
<td>0.2</td>
<td>375</td>
<td>11</td>
<td>308</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>27284</td>
<td>-5</td>
<td>0.2</td>
<td>380</td>
<td>11</td>
<td>260</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>27285</td>
<td>55</td>
<td>0.2</td>
<td>590</td>
<td>11</td>
<td>146</td>
<td>3</td>
<td>-5</td>
<td>6.0</td>
</tr>
<tr>
<td>27286</td>
<td>35</td>
<td>0.2</td>
<td>465</td>
<td>11</td>
<td>67</td>
<td>10</td>
<td>475</td>
<td>5.0</td>
</tr>
<tr>
<td>27292</td>
<td>15</td>
<td>0.3</td>
<td>325</td>
<td>9</td>
<td>64</td>
<td>6</td>
<td>3400</td>
<td>3.6</td>
</tr>
<tr>
<td>27293</td>
<td>5</td>
<td>0.2</td>
<td>180</td>
<td>11</td>
<td>88</td>
<td>10</td>
<td>3000</td>
<td>3.8</td>
</tr>
<tr>
<td>27294</td>
<td>15</td>
<td>0.3</td>
<td>500</td>
<td>10</td>
<td>107</td>
<td>6</td>
<td>2700</td>
<td>3.5</td>
</tr>
<tr>
<td>27300</td>
<td>390</td>
<td>0.2</td>
<td>220</td>
<td>11</td>
<td>121</td>
<td>4</td>
<td>280</td>
<td>4.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au</th>
<th>Ag</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>As</th>
<th>Hg</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>29277</td>
<td>5</td>
<td>0.2</td>
<td>400</td>
<td>14</td>
<td>44</td>
<td>8</td>
<td>5</td>
<td>5.5</td>
</tr>
<tr>
<td>29278</td>
<td>10</td>
<td>0.2</td>
<td>660</td>
<td>11</td>
<td>156</td>
<td>6</td>
<td>20</td>
<td>4.5</td>
</tr>
<tr>
<td>29279</td>
<td>5</td>
<td>0.2</td>
<td>235</td>
<td>12</td>
<td>200</td>
<td>5</td>
<td>10</td>
<td>5.5</td>
</tr>
<tr>
<td>29280</td>
<td>50</td>
<td>0.2</td>
<td>1100</td>
<td>13</td>
<td>324</td>
<td>7</td>
<td>30</td>
<td>6.5</td>
</tr>
<tr>
<td>29281</td>
<td>20</td>
<td>0.2</td>
<td>167</td>
<td>11</td>
<td>95</td>
<td>5</td>
<td>45</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Map B

- Howard 23.8
- + Disc. post
- Snake claim

Notes by RCP

Scale 1" = 20′

Level

Date 10/22/76

Silver Peak Area

Mine Road Cut in NW4 NE4, 13-31-6
Sample Results

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (ppb)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>As (ppm)</th>
<th>Hg (ppb)</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>27289</td>
<td>35</td>
<td>0.2</td>
<td>210</td>
<td>18</td>
<td>360</td>
<td>8</td>
<td>250</td>
<td>10 ft.</td>
</tr>
<tr>
<td>27290</td>
<td>25</td>
<td>0.5</td>
<td>245</td>
<td>35</td>
<td>460</td>
<td>15</td>
<td>260</td>
<td>10</td>
</tr>
<tr>
<td>27291</td>
<td>15</td>
<td>0.4</td>
<td>168</td>
<td>27</td>
<td>300</td>
<td>12</td>
<td>155</td>
<td>10</td>
</tr>
</tbody>
</table>

**Silver Peak Area,
Mine Road Cut in SW 1/4 NE 1/4 13-31-6**

Notes by RCP
Scale: 1" = 20'
Level
Date: 10/27/76
SAMPLE RESULTS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au ppb</th>
<th>Ag ppm</th>
<th>Cu ppm</th>
<th>Pb ppm</th>
<th>Zn ppm</th>
<th>As ppm</th>
<th>Hg ppm</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>27278</td>
<td>45</td>
<td>0.2</td>
<td>2600</td>
<td>11</td>
<td>34</td>
<td>12</td>
<td>40</td>
<td>10 ft.</td>
</tr>
<tr>
<td>27279</td>
<td>100</td>
<td>0.2</td>
<td>330</td>
<td>11</td>
<td>93</td>
<td>16</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>27280</td>
<td>5</td>
<td>0.2</td>
<td>235</td>
<td>10</td>
<td>125</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>27281</td>
<td>15</td>
<td>0.2</td>
<td>330</td>
<td>9</td>
<td>101</td>
<td>5</td>
<td>15</td>
<td>5.0</td>
</tr>
<tr>
<td>27282</td>
<td>5</td>
<td>0.2</td>
<td>385</td>
<td>8</td>
<td>121</td>
<td>4</td>
<td>-5</td>
<td>10</td>
</tr>
<tr>
<td>27283</td>
<td>-5</td>
<td>0.2</td>
<td>375</td>
<td>11</td>
<td>308</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>27284</td>
<td>-5</td>
<td>0.2</td>
<td>480</td>
<td>11</td>
<td>260</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>27285</td>
<td>55</td>
<td>0.2</td>
<td>590</td>
<td>11</td>
<td>146</td>
<td>3</td>
<td>-5</td>
<td>6.0</td>
</tr>
<tr>
<td>27286</td>
<td>35</td>
<td>0.2</td>
<td>465</td>
<td>11</td>
<td>67</td>
<td>10</td>
<td>475</td>
<td>5.0</td>
</tr>
<tr>
<td>27292</td>
<td>15</td>
<td>0.3</td>
<td>325</td>
<td>9</td>
<td>64</td>
<td>6</td>
<td>3400</td>
<td>3.6</td>
</tr>
<tr>
<td>27293</td>
<td>5</td>
<td>0.2</td>
<td>180</td>
<td>11</td>
<td>88</td>
<td>10</td>
<td>3000</td>
<td>3.8</td>
</tr>
<tr>
<td>27294</td>
<td>15</td>
<td>0.3</td>
<td>500</td>
<td>10</td>
<td>107</td>
<td>6</td>
<td>2700</td>
<td>3.5</td>
</tr>
<tr>
<td>27300</td>
<td>390</td>
<td>0.2</td>
<td>220</td>
<td>11</td>
<td>121</td>
<td>4</td>
<td>280</td>
<td>4.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au ppb</th>
<th>Ag ppm</th>
<th>Cu ppm</th>
<th>Pb ppm</th>
<th>Zn ppm</th>
<th>As ppm</th>
<th>Hg ppm</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>29277</td>
<td>5</td>
<td>0.2</td>
<td>400</td>
<td>14</td>
<td>44</td>
<td>8</td>
<td>5</td>
<td>5.0 5.1</td>
</tr>
<tr>
<td>29278</td>
<td>10</td>
<td>0.2</td>
<td>660</td>
<td>11</td>
<td>156</td>
<td>6</td>
<td>20</td>
<td>4.1</td>
</tr>
<tr>
<td>29279</td>
<td>5</td>
<td>0.2</td>
<td>235</td>
<td>12</td>
<td>200</td>
<td>5</td>
<td>10</td>
<td>5.0</td>
</tr>
<tr>
<td>29280</td>
<td>50</td>
<td>0.2</td>
<td>1100</td>
<td>13</td>
<td>324</td>
<td>7</td>
<td>30</td>
<td>6.1</td>
</tr>
<tr>
<td>29281</td>
<td>20</td>
<td>0.2</td>
<td>167</td>
<td>11</td>
<td>95</td>
<td>5</td>
<td>45</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Silver Peak Area

Mine Road Cut in NW 1/4 NE 1, 13-31-6

Notes by RCP

Scale 1" = 20'

Level

Date 10/22/76

11/5/76
Beaver Springs Mining Co.
Holdings
Silver Peak Mining Dist.
Gift for H.E.
Scale 1/2 in. = 20 ft.
STATUS OF PUBLIC DOMAIN
LAND AND MINERAL TITLES

MT PLAT

INDEX TO SEGREGATED TRACTS

<table>
<thead>
<tr>
<th>TRACT NO</th>
<th>T</th>
<th>R</th>
<th>SEC</th>
<th>SUBDIVISION</th>
</tr>
</thead>
</table>

FOR ORDERS EFFECTING DISPOSAL OR USE OF
UNDENTIFIED LANDS WITHDRAWN FOR CLASSIFICATION,
MINERALS, WATER AND/OR OTHER PUBLIC PURPOSES,
REFER TO INDEX OF MISCELLANEOUS DOCUMENTS.

OR 013199 Silver Butte Lookout
Sec 23 NW 1/4

OR 015722 Det PL 167 (Act of Cong 7/23/1955)
completed 3/17/1966, all PD surface Mgmt by BLM

OR 5757 SG G Cl Wult Use
All unappropriated public lands
Sec 6: Lot 5, SWNE 1/4, SE1NW 1/4, NW 1/4 SE 1/4
Sec 10: SWNE 1/4, NW 1/4 NW 1/4, SE1SW 1/4, NE1SE 1/4, S1SE 1/4
Sec 12: NW1NW 1/4
Sec 18: SW1SE 1/4
Sec 20: NE1NW 1/4
Sec 22: NE1NE 1/4, S1SE 1/4, S1SW 1/4, SE 1/4
Survey Pending Group 695
Sec I: All
Sec 2: E1/2
Sec II: NE1/4
Sec 12: N1/2

PLO 5490 2/12/1975 Wd1 Mult Use Mgmt OR 012693
All Public Lands under Sec. Int. Juris

CURRENT TO

BY

MAY 19 1975

Wid Mer
T. 21 S
R. 6 W
Geology of the area in the vicinity of the Almeda and Silver Peak Mines.

MINES AND PROSPECTS
1. Gold Bluff Mine
2. Sweetbrier Mine
3. Huckleberry Mine
4. Beaver Springs Mine not located
5. Golden Gate Mine
6. Silver Peak Prospects
7. Prospects on Canyon Creek
8. Prospects along west fork of Canyon Creek

X Mine X Prospect

Mineralized zone

SCALE

0 1 2 3 4 5 Miles

Oregon

map area

Taken from U.S.G.S. Riddle Folio and Bulletin No. 546 by J.S. Diller.
NOTES:
1. Underground workings and drilling data are based on the data of the Chevron Resources Co.
2. Geology was mapped by Rand's project geologist, G. Draxm.
3. Samples numbered 'Shannon' and 'Al' were previously collected by U.S. Geological Survey and Chevron Resources Co., respectively. The rest of the samples were collected by this survey.

LEGEND
- Massive andesite sills and dikes.
- Shaly tuff.
- Acidic tuff (pyrite disseminated).
- Andesite tuff and other intermediate to felsic rocks.
- Block to semi-blastic ore.
- Siliceous ore.
- Shear zone ore.

Bedding
Fault
Grab sample locations
Composite chip sample
Channel sample

SILVER BUTTE PATENTED CLAIM
FORMOSA CLAIM
FORMOSA No. 1 ADIT (FT-1 Adit)
FORMOSA No. 2 ADIT (FT-2 Adit)
FORMOSA No. 3 ADIT (FT-3 Adit)
ST-1 Adit
ST-2 Adit
ST-3 Adit
Base line
Chevron DOH-SP4
Chevron DOH-SP2
Chevron DOH-SP3
Shannon No. 9
Shannon No. 8
Chevron DOH-SP1
FORMOSA CLAIM AREA
DOUGLAS COUNTY, OREGON

RAND VENTURES INC.
UNDERGROUND GEOLOGIC MAP OF THE LEVEL FT-1 ADIT, AND SUPERIMPOSED WITH OTHER UNDERGROUND WORKINGS AND SAMPLE LOCATIONS, FORMOSA CLAIM AREA
DATE Oct. 1985
BEATY GEOLOGICAL LTD.
Massive andesite sills
Bedded intermediate to acidic tuffs
Acidic tuff
Andesitic lapilll tuff
Dacite flows
Basaltic pyroclastic flows (and lava?)
Grid base line and station
Outcrop
Adit and dump
22, 23, 26 & 27-Section corner post, T31S, R6W
Fault (with inferred movement)
Geologic contact
Bedding strike and dip
Foliation strike and dip
Prominent fracture set strike and dip
Claim Boundary

LEGEND
Surface Geology

RAND VENTURES INC.

GEOLOGIC MAP OF
THE FORMOSA CLAIM AREA
DOUGLAS COUNTY, OREGON

DATE Oct.1985 FIGURE 5

BEATY GEOLOGICAL LTD.
LEGEND

Rock Types
- Andesite tuff breccia
- Heterogeneous andesite pyroclastics
- Andesite
- Bedded tuffs
- Andesitic lapilli tuff

Alternation
- Intense crigillation and gossan

Bedding

Fault

Foliation

Adit

Logging road

Soil sample location

Claim boundary

Outcrop
RIDDLE CLAIM BLOCK

FORMOSA CLAIM BLOCK

SILVER BUTTE CLAIM

LEGEND
- PROPERTY BOUNDARY
- ADIT
- ROADS
- SOIL SAMPLE SITE
- SECTION CORNER IN T 31S, R5W

ANOMALY OUTLINES
ELEMENT FORMOSA RIDDLE
Copper 150 ppm 100 ppm
Zinc 150 ppm 100 ppm

SCALE
50 0 100 200 300 400 500 m

RAND VENTURES

COPPER AND ZINC SOIL ANOMALIES

Date Oct. 1985 FIG. 6
BEATY GEOLOGICAL
LEAD AND BARIUM SOIL ANOMALIES
FORMOSA-RIDDLE CLAIM AREA
DOUGLAS COUNTY, OREGON

Data: Oct. 1985

RAND VENTURES

BEATY GEOLOGICAL

LEAD AND BARIUM SOIL ANOMALIES
FORMOSA - RIDDLE CLAIM AREA
DOUGLAS COUNTY, OREGON

Data: Oct. 1985

RAND VENTURES

BEATY GEOLOGICAL
EXPLANATION

Western Jurassic belt
Western Paleozoic and Triassic belt
Central Metamorphic belt
Eastern Klamath belt
MASSIVE SULFIDE DEPOSITS

1. Silver Peak
2. Almeda
3. Fall Creek
4. Turner-Albright

Figure 3. Lithologic Belts of the Klamath Mountains (modified after Irwin (1972), cited in Derkey, 1982).

Figure 4. Generalized Geology of the Silver Peak and Almeda Mine Areas (modified after Koski and Derkey (1981), cited in Derkey 1982).
DOTHAN FORMATION
GREYWACKE & SANDY MUDSTONE

BASALTIC FLOWS, AGGLOMERATES & TUFFS

ANDESITE & SILICIFIED ANDESITE FLOWS

WELL BEDDED PORCELANOUS TO MED-GR. RHYODACITE TUFFS

LEGEND:

AI - ANDESITE TUFFS
FRI - FOLIATED RHYOLITIC TUFFS (HOSTS MASSIVE SULPHIDE)
FD1 - FOLIATED DACITIC TUFFS
A1 - ANDESITE SILL (or DIKE)

GEOLOGICAL BOUNDARY
FAULT
ANTICLISE
SYNCLISE, PLUNGING
BEDDING; INCLINED, VERTICAL
SHAFT

FORMOSA RESOURCES CORPORATION
SILVER PEAK PROJECT
DOUGLAS COUNTY, OREGON
GEOLOGY MAP
of the SILVER BUTTE AREA
FORMOSA CLAIMS

FEBRUARY, 1987 FIGURE No. 11
LEGEND:

- SAMPLE LOCATION AND COPPER CONTENT (IN ppm)
- CONTOUR INTERVAL
- TUNNEL
- CLAIM BOUNDARY
- LOGGING ROAD
 22, 23, 26 AND 27 - SECTIONS
 CORNER POST, T 31 S, R 6 W
- CONTAMINATED SAMPLE

COPPER CONTENT OF THE SOIL SAMPLES
FORMOSA CLAIM AREA
DOUGLAS COUNTY, OREGON
SEC. 27, T 31 S, R 6 W, WM

DATE: FEBRUARY, 1987 FIGURE: 14
LEGEND:

- SAMPLE LOCATION AND ZINC CONTENT (IN ppm)
- CONTOUR INTERVAL
- TUNNEL
- CLAIM BOUNDARY
- LOGGING ROAD
- 22, 23, 26 AND 27 - SECTIONS CORNER POST, T 31 S, R 6 W
- CONTAMINATED SAMPLE

FORMOSA CLAIM AREA
DOUGLAS COUNTY, OREGON.
SEC. 27, T 31 S, R 6 W, WM

DATE: FEBRUARY, 1987 FIGURE: 15
LEGEND:

133 SAMPLE LOCATION AND LEAD CONTENT (IN ppm)

- CONTOUR INTERVAL 20 & 50

- TUNNEL

- CLAIM BOUNDARY

- LOGGING ROAD

22, 23, 26 AND 27 - SECTIONS
CORNER POST, T 31 S, R 6 W

? CONTAMINATED SAMPLE

LEAD CONTENT OF THE SOIL SAMPLES
FORMOSA CLAIM AREA
DOUGLAS COUNTY, OREGON.
SEC. 27, T 31 S, R 6 W, W.W.

DATE: FEBRUARY, 1987 FIGURE: 16
LEGEND:

SAMPLE LOCATION AND BARIUM CONTENT (IN ppm)

- CONTOUR INTERVAL
- TUNNEL
- CLAIM BOUNDARY
- LOGGING ROAD

22, 23, 26 AND 27 - SECTIONS CORNER POST, T 31 S, R 6 W

CONTAMINATED SAMPLE

SCALE

FORMOSA RESOURCES CORPORATION

BARIUM CONTENT OF THE SOIL SAMPLES
FORMOSA CLAIM AREA
DOUGLAS COUNTY, OREGON
SEC 27, T 31 S, R 6 W, W

DATE: FEBRUARY, 1987 FIGURE: 17
LEGEND

Sample location and
Copper content in ppm
Contour interval
Logging road
Claim line
Section corner

FORMOSA
RESOURCES CORPORATION
COPPER CONTENT OF THE SOIL SAMPLES
RIDDLE CLAIM AREA
DOUGLAS COUNTY, OREGON
SEC. 27, T 31S, R 6W, W.M.

DATE: FEBRUARY, 1987 FIGURE: 18

-46-
ZINC CONTENT OF THE SOIL SAMPLES
RIDDLE CLAIM AREA
DOUGLAS COUNTY, OREGON.
SEC. 27, T31S, R6W, W.M.

DATE: FEBRUARY, 1987 FIGURE: 19

LEGEND

Sample location and Zinc content in ppm

Contour interval

Logging road

Claim line

Section corner
LEGEND

60 Sample location and
* Barium content in ppm

50 Contour interval

== Logging road

--- Claim line

Section corner

FORMOSA RESOURCES CORPORATION

BARIUM CONTENT OF THE SOIL SAMPLES
RIDDLE CLAIM AREA
DOUGLAS COUNTY, OREGON.
SEC. 27, T 31 S, R 6 W, W.M.

DATE: FEBRUARY, 1987 FIGURE: 20