LiDAR Remote Sensing Data Collection:
Klamath Bureau of Reclamation - Delivery 3

Table of Contents

1. Overview ... 1

2. Acquisition .. 2
 2.1 Airborne Survey - Instrumentation and Methods 2
 2.2 Ground Survey - Instrumentation and Methods 3
 2.2.1 Instrumentation ... 3
 2.2.3 Methodology ... 4

3. LiDAR Data Processing .. 7
 3.1 Applications and Work Flow Overview 7
 3.2 Aircraft Kinematic GPS and IMU Data 8
 3.3 Laser Point Processing ... 8

4. LiDAR Accuracy Assessment ... 9
 4.1 Laser Noise and Relative Accuracy 9
 4.2 Absolute Accuracy ... 10

5. Study Area Results ... 10
 5.1 Data Summary ... 11
 5.2 Data Density/Resolution ... 11
 5.3 Relative Accuracy Calibration Results 21
 5.4 Absolute Accuracy ... 22

6. Temporal Features ... 24

7. Projection/Datum and Units ... 24

8. Deliverables .. 25

9. Additional deliverables (Oregon State Plane South (Int. ft.)) 25

10. Selected Images .. 26

11. Glossary ... 29

12. Citations ... 30

Appendix A ... 31
1. Overview

Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Klamath Bureau of Reclamation project area for the final delivery (Delivery 3) from November 6th through the 16th, 2010 and May 22nd through the 30th, 2011. This report documents the data acquisition, processing methods, accuracy assessment, and deliverables of that data as well as the cumulative statistics over the entire project area. The total area of acquired data in Delivery 3 is 181,359 acres, culminating the delivery of 527,393 acres for the entire Klamath Bureau of Reclamation survey area.

Figure 1. Klamath Bureau of Reclamation project area and delivery scheme.
2. Acquisition

2.1 Airborne Survey - Instrumentation and Methods

The LiDAR surveys both the ALS 50 phase ii & ALS 60 laser systems mounted in a Cessna Caravan 208B. The Leica systems were set to acquire between 105,000 and 150,000 laser pulses per second (i.e., 105 or 150 kHz pulse rates) and flown at both 900 and 1500 meters above ground level (AGL) depending on weather and terrain, capturing a scan angle of ±14° from nadir. These settings were developed to yield points with an average native pulse density of ≥8 pulses per square meter over terrestrial surfaces. It is not uncommon for some types of surfaces (e.g. dense vegetation or water) to return fewer pulses than the laser originally emitted. These discrepancies between ‘native’ and ‘delivered’ density will vary depending on terrain, land cover, and the prevalence of water bodies.

The Cessna Caravan is a stable platform, ideal for flying slow and low for high density projects. The Leica ALS50 Phase II sensor head installed in the Caravan 208B is shown on the left.

All areas were surveyed with an opposing flight line side-lap of ≥60% (≥100% overlap) to reduce laser shadowing and increase surface laser painting. The Leica laser systems allow up to four range measurements (returns) per pulse, and all discernable laser returns were processed for the output dataset.

To accurately solve for laser point position (geographic coordinates x, y, z), the positional coordinates of the airborne sensor and the attitude of the aircraft were recorded continuously throughout the LiDAR data collection mission. Aircraft position was measured twice per second (2 Hz) by an onboard differential GPS unit. Aircraft attitude was measured 200 times per second (200 Hz) as pitch, roll and yaw (heading) from an onboard inertial measurement unit (IMU). To allow for post-processing correction and calibration, aircraft/sensor position and attitude data are indexed by GPS time.
2.2 Ground Survey - Instrumentation and Methods

During the LiDAR survey, static (1 Hz recording frequency) ground surveys were conducted over set monuments. Monument coordinates are provided in Table 1 and shown in Figure 2 for the AOI. After the airborne survey, the static GPS data were processed using triangulation with Continuously Operating Reference Stations (CORS) and checked using the Online Positioning User Service (OPUS') to quantify daily variance. Multiple sessions were processed over the same monument to confirm antenna height measurements and reported position accuracy.

Indexed by time, these GPS data were used to correct the continuous onboard measurements of aircraft position recorded throughout the mission. Control monuments were located within 13 nautical miles of the survey area.

2.2.1 Instrumentation

For this project area, a Trimble GPS receiver model R7 with Zephyr Geodetic antenna with ground plane was deployed for all static control. A Trimble model R8 GNSS unit was used for collecting check points using real time kinematic (RTK) survey techniques. For RTK data, the collector began recording after remaining stationary for 5 seconds then calculated the pseudo range position from at least three epochs with the relative error under 1.5 cm horizontal and 2 cm vertical. All GPS measurements were made with dual frequency L1-L2 receivers with carrier-phase correction.

Table 1. Base Station control coordinates for all Klamath Bureau of Reclamation Deliveries.

<table>
<thead>
<tr>
<th>Base Station ID</th>
<th>Datum: NAD83 (CORS96)</th>
<th>GRS80</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latitude</td>
<td>Longitude</td>
</tr>
<tr>
<td>Delivery 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF4198</td>
<td>41°59'48.92034"N</td>
<td>121°46'39.33845"W</td>
</tr>
<tr>
<td>DH6379</td>
<td>42°00'00.30183"N</td>
<td>121°41'59.83592"W</td>
</tr>
<tr>
<td>KLM_BOR3_02</td>
<td>42°09'23.77247"N</td>
<td>121°32'44.07464"W</td>
</tr>
<tr>
<td>KLM_BOR3_01</td>
<td>42°11'12.74560"N</td>
<td>121°39'42.36108"W</td>
</tr>
<tr>
<td>DH6553</td>
<td>42°00'03.18055"N</td>
<td>121°52'14.03019"W</td>
</tr>
</tbody>
</table>

1 Online Positioning User Service (OPUS) is run by the National Geodetic Survey to process corrected monument positions.
2.2.3 Methodology

Each aircraft is assigned a ground crew member with two Trimble R7 receivers and an R8 receiver. The ground crew vehicles are equipped with standard field survey supplies and equipment including safety materials. All control monuments were observed for a minimum of one survey session lasting no fewer than 4 hours and another session lasting no fewer than 2 hours. At the beginning of every session the tripod and antenna were reset, resulting in two independent instrument heights and data files. Data was collected at a rate of 1Hz using a 10 degree mask on the antenna.
The ground crew uploaded the static GPS data collected during the flight to our online Dropbox site on a daily basis to be returned to the office for Professional Land Surveyor (PLS) oversight, QA/QC review and processing. OPUS processing triangulates the monument position using 3 CORS stations resulting in a fully adjusted position. After multiple days of data had been collected at each monument, accuracy and error ellipses were calculated from the OPUS reports. This information leads to a rating of the monument based on FGDC-STD-007.2-1998 Part 2 table 2.1 at the 95% confidence level. When a statistically stable position was found, CORPSCON\(^3\) 6.0.1 software was used to convert the UTM positions to geodetic positions.

RTK and aircraft mounted GPS measurements were made during periods with PDOP\(^4\) less than or equal to 3.0 and with at least 6 satellites in view of both a stationary reference receiver and the roving receiver. Static GPS data collected in a continuous session average the high PDOP into the final solution in the method used by CORS stations. RTK positions were collected on bare earth locations such as: paved, gravel or stable dirt roads, and other locations where the ground is clearly visible (and is likely to remain visible) from the sky during the data acquisition and RTK measurement period(s). RTK measurements are not taken on highly reflective surfaces such as center line stripes or lane markings on roads. RTK points were taken no closer than one meter to any nearby terrain breaks such as road edges or drop offs.

\(^2\) Federal Geographic Data Committee Draft Geospatial Positioning Accuracy Standards
\(^3\) U.S. Army Corps of Engineers, Engineer Research and Development Center Topographic Engineering Center software
\(^4\) PDOP: Point Dilution of Precision is a measure of satellite geometry, the smaller the number the better the geometry between the point and the satellites.
Figure 2. Delivery 3 RTK check points and control monument locations used for the Klamath Bureau of Reclamation data acquisition, processing, and accuracy checks.
3. LiDAR Data Processing

3.1 Applications and Work Flow Overview

1. Resolved kinematic corrections for aircraft position data using kinematic aircraft GPS and static ground GPS data.
 Software: Waypoint GPS v.8.10, Trimble Geomatics Office v.1.62

2. Developed a smoothed best estimate of trajectory (SBET) file that blends post-processed aircraft position with attitude data. Sensor head position and attitude were calculated throughout the survey. The SBET data were used extensively for laser point processing.
 Software: IPAS v.1.35

3. Calculated laser point position by associating SBET position to each laser point return time, scan angle, intensity, etc. Created raw laser point cloud data for the entire survey in *.las (ASPRS v. 1.2) format. Data were converted to orthometric elevations (NAVD88) by applying a Geoid03 correction.
 Software: ALS Post Processing Software v.2.70, Corpscon 6.0.1

4. Imported raw laser points into manageable blocks (less than 500 MB) to perform manual relative accuracy calibration and filter for pits/birds. Ground points were then classified for individual flight lines (to be used for relative accuracy testing and calibration).
 Software: TerraScan v.11.009

5. Using ground classified points per each flight line, the relative accuracy was tested. Automated line-to-line calibrations were then performed for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift. Calibrations were performed on ground classified points from paired flight lines. Every flight line was used for relative accuracy calibration.
 Software: TerraMatch v.11.006

6. Position and attitude data were imported. Resulting data were classified as ground and non-ground points. Statistical absolute accuracy was assessed via direct comparisons of ground classified points to ground RTK survey data.
 Software: TerraScan v.11.009, TerraModeler v.11.004

7. Bare Earth models were created as a triangulated surface and exported as ERDAS Imagine grids at a 3-foot pixel resolution.
 Software: TerraScan v.11.009, ArcMap v. 9.3.1, TerraModeler v.11.004
3.2 Aircraft Kinematic GPS and IMU Data

LiDAR survey datasets were referenced to the 1 Hz static ground GPS data collected over pre-surveyed monuments with known coordinates. While surveying, the aircraft collected 2 Hz kinematic GPS data, and the onboard inertial measurement unit (IMU) collected 200 Hz aircraft attitude data. Waypoint GPS v.8.10 was used to process the kinematic corrections for the aircraft. The static and kinematic GPS data were then post-processed after the survey to obtain an accurate GPS solution and aircraft positions. IPAS v.1.35 was used to develop a trajectory file that includes corrected aircraft position and attitude information. The trajectory data for the entire flight survey session were incorporated into a final smoothed best estimated trajectory (SBET) file that contains accurate and continuous aircraft positions and attitudes.

3.3 Laser Point Processing

Laser point coordinates were computed using the IPAS and ALS Post Processor software suites based on independent data from the LiDAR system (pulse time, scan angle), and aircraft trajectory data (SBET). Laser point returns (first through fourth) were assigned an associated (x, y, z) coordinate along with unique intensity values (0-255). The data were output into large LAS v. 1.2 files with each point maintaining the corresponding scan angle, return number (echo), intensity, and x, y, z (easting, northing, and elevation) information.

These initial laser point files were too large for subsequent processing. To facilitate laser point processing, bins (polygons) were created to divide the dataset into manageable sizes (< 500 MB). Flightlines and LiDAR data were then reviewed to ensure complete coverage of the survey area and positional accuracy of the laser points.

Laser point data were imported into processing bins in TerraScan, and manual calibration was performed to assess the system offsets for pitch, roll, heading and scale (mirror flex). Using a geometric relationship developed by Watershed Sciences, each of these offsets was resolved and corrected if necessary.

LiDAR points were then filtered for noise, pits (artificial low points), and birds (true birds as well as erroneously high points) by screening for absolute elevation limits, isolated points and height above ground. Each bin was then manually inspected for remaining pits and birds and spurious points were removed. In a bin containing approximately 7.5-9.0 million points, an average of 50-100 points are typically found to be artificially low or high. Common sources of non-terrestrial returns are clouds, birds, vapor, haze, decks, brush piles, etc.

LiDAR Data Acquisition and Processing: Klamath Bureau of Reclamation - Delivery 3

Prepared by Watershed Sciences, Inc.
Internal calibration was refined using TerraMatch. Points from overlapping lines were tested for internal consistency and final adjustments were made for system misalignments (i.e., pitch, roll, heading offsets and scale). Automated sensor attitude and scale corrections yielded 3-5 cm improvements in the relative accuracy. Once system misalignments were corrected, vertical GPS drift was then resolved and removed per flight line, yielding a slight improvement (<1 cm) in relative accuracy.

The TerraScan software suite is designed specifically for classifying near-ground points (Soininen, 2004). The processing sequence began by ‘removing’ all points that were not ‘near’ the earth based on geometric constraints used to evaluate multi-return points. The resulting bare earth (ground) model was visually inspected and additional ground point modeling was performed in site-specific areas to improve ground detail. This manual editing of ground often occurs in areas with known ground modeling deficiencies, such as: bedrock outcrops, cliffs, deeply incised stream banks, and dense vegetation. In some cases, automated ground point classification erroneously included known vegetation (i.e., understory, low/dense shrubs, etc.). These points were manually reclassified as default. Ground surface rasters were then developed from triangulated irregular networks (TINs) of ground points.

4. LiDAR Accuracy Assessment

4.1 Laser Noise and Relative Accuracy

Laser Noise
For any given target, laser noise is the breadth of the data cloud per laser return (i.e., last, first, etc.). Lower intensity surfaces (roads, rooftops, still/calm water) experience higher laser noise. The laser noise range for this survey was approximately 0.02 meters.

Relative Accuracy
Relative accuracy refers to the internal consistency of the data set - the ability to place a laser point in the same location over multiple flight lines, GPS conditions, and aircraft attitudes. Affected by system attitude offsets, scale, and GPS/IMU drift, internal consistency is measured as the divergence between points from different flight lines within an overlapping area. Divergence is most apparent when flight lines are opposing. When the LiDAR system is well calibrated, the line-to-line divergence is low (<10 cm). See Appendix A for further information on sources of error and operational measures that can be taken to improve relative accuracy.
Relative Accuracy Calibration Methodology

1. **Manual System Calibration**: Calibration procedures for each mission require solving geometric relationships that relate measured swath-to-swath deviations to misalignments of system attitude parameters. Corrected scale, pitch, roll and heading offsets were calculated and applied to resolve misalignments. The raw divergence between lines was computed after the manual calibration was completed and reported for each survey area.

2. **Automated Attitude Calibration**: All data were tested and calibrated using TerraMatch automated sampling routines. Ground points were classified for each individual flight line and used for line-to-line testing. System misalignment offsets (pitch, roll and heading) and scale were solved for each individual mission and applied to respective mission datasets. The data from each mission were then blended when imported together to form the entire area of interest.

3. **Automated Z Calibration**: Ground points per line were used to calculate the vertical divergence between lines caused by vertical GPS drift. Automated Z calibration was the final step employed for relative accuracy calibration.

4.2 **Absolute Accuracy**

Laser point absolute accuracy is largely a function of laser noise and relative accuracy. To minimize the contributions of laser noise and relative accuracy to absolute error, a number of noise filtering and calibration procedures were performed prior to evaluating absolute accuracy. The LiDAR quality assurance process uses the data from the real-time kinematic (RTK) ground survey conducted in Klamath BOR survey area. For the delivery 3 AOI, a total of 5400 RTK GPS measurements (11,704 RTK measurements for entire project) were collected by Watershed Sciences, Inc. on hard surfaces distributed among multiple flight swaths.

The vertical accuracy of the LiDAR data is described as the mean and standard deviation (sigma -σ) of divergence of LiDAR point coordinates from RTK ground survey point coordinates. To provide a sense of the model predictive power of the dataset, the root mean square error (RMSE) for vertical accuracy is also provided. These statistics assume the error distributions for x, y, and z are normally distributed, thus we also consider the skew and kurtosis of distributions when evaluating error statistics.

Statements of statistical accuracy apply to fixed terrestrial surfaces only and may not be applied to areas of dense vegetation or steep terrain (See Appendix A).

5. **Study Area Results**
Summary statistics for point resolution and accuracy (relative and absolute) of the LiDAR data collected in the Klamath BOR survey area are presented below in terms of central tendency, variation around the mean, and the spatial distribution of the data (for point resolution by tile). Overall statistics for the entire Klamath BOR project area are included.

5.1 Data Summary

Table 2. LiDAR Resolution and Accuracy - Specifications and Achieved Values

<table>
<thead>
<tr>
<th></th>
<th>Targeted</th>
<th>Achieved (Delivery 3)</th>
<th>Achieved (Cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution:</td>
<td>≥ 8 points/m²</td>
<td>8.19 points/m²</td>
<td>8.66 points/m²</td>
</tr>
<tr>
<td>Vertical Accuracy (1 σ):</td>
<td><15 cm</td>
<td>3.3 cm</td>
<td>3.3 cm</td>
</tr>
</tbody>
</table>

5.2 Data Density/Resolution

The average first-return density of delivered dataset is 8.19 points per square meter (Table 2). The initial dataset, acquired to be ≥8 points per square meter, was filtered as described previously to remove spurious or inaccurate points. Additionally, some types of surfaces (i.e., dense vegetation, breaks in terrain, water, steep slopes) may return fewer pulses (delivered density) than the laser originally emitted (native density). Areas covered by water surfaces and flooded fields can be responsible for localized native densities being less than the targeted value (Figures 9-11).

Ground classifications were derived from automated ground surface modeling and manual, supervised classifications where it was determined that the automated model had failed. Ground return densities will be lower in areas of dense vegetation, water, or buildings. Figures 12-14 show the distribution of average ground point densities for each tile.

LiDAR data resolution for Delivery 3 of the Klamath Bureau of Reclamation project:

- Average Point (First Return) Density = 8.19 points/m²
- Average Ground Point Density = 2.90 points/m²

Figure 3. Density distribution for Delivery 1 first return laser points
Figure 4. Density distribution for Delivery 2 first return laser points

Figure 5. Density distribution for Delivery 3 first return laser points
Figure 6. Density distribution for Delivery 1 ground classified laser points

Figure 7. Density distribution for Delivery 2 ground classified laser points
Figure 8. Density distribution for Delivery 3 ground classified laser points
Figure 9. Density distribution map for first return points by tile for Delivery 1.
Figure 10. Density distribution map for first return points by tile for Delivery 2.
Figure 11. Density distribution map for first return points by tile for Delivery 3.
Figure 12. Density distribution map for ground classified points by tile for Delivery 1.
Figure 13. Density distribution map for ground classified points by tile for Delivery 2.
Figure 14. Density distribution map for ground classified points by tile for Delivery 3.
5.3 Relative Accuracy Calibration Results

Relative accuracy statistics for the Klamath Bureau of Reclamation dataset measure the full survey calibration, including areas outside the delivered boundary, of both Delivery 3 and the entire project area.

- Project Average = 0.031 m (cumulative = 0.027 m)
- Median Relative Accuracy = 0.030 m (cumulative = 0.028 m)
- 1σ Relative Accuracy = 0.007 m (cumulative = 0.008 m)
- 1.96σ Relative Accuracy = 0.013 m (cumulative = 0.016 m)

Figure 15. Distribution of Delivery 3 relative accuracies per flight line, non slope-adjusted.

Figure 16. Distribution of cumulative relative accuracies per flight line, non slope-adjusted.
5.4 Absolute Accuracy

Absolute accuracy for Delivery 3 and cumulative values for the Klamath Bureau of Reclamation delivered data:

Table 3. Absolute Accuracy - Delivery 3 deviation between laser points and RTK hard surface survey points

<table>
<thead>
<tr>
<th>Delivery 3 Absolute Accuracy Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTK Survey Sample Size (n): 5400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Root Mean Square Error (RMSE) = 0.035 m</th>
<th>Minimum Δz = -0.109 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Deviations</td>
<td></td>
</tr>
<tr>
<td>1 sigma (σ): 0.033 m</td>
<td>1.96 sigma (σ): 0.065 m</td>
</tr>
<tr>
<td>Maximum Δz = 0.085 m</td>
<td>Average Δz = -0.009 m</td>
</tr>
</tbody>
</table>

Table 4. Absolute Accuracy - Cumulative deviation between laser points and RTK hard surface survey points

<table>
<thead>
<tr>
<th>Cumulative Absolute Accuracy Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTK Survey Sample Size (n): 11,704</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Root Mean Square Error (RMSE) = 0.033 m</th>
<th>Minimum Δz = -0.109 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Deviations</td>
<td></td>
</tr>
<tr>
<td>1 sigma (σ): 0.038 m</td>
<td>1.96 sigma (σ): 0.074 m</td>
</tr>
<tr>
<td>Maximum Δz = 0.085 m</td>
<td>Average Δz = -0.004 m</td>
</tr>
</tbody>
</table>
Figure 17. Delivery 3 Absolute Accuracy - Histogram Statistics

![Absolute Accuracy Histogram Statistics](image1)

Figure 18. Cumulative Absolute Accuracy - Histogram Statistics

![Cumulative Absolute Accuracy Histogram Statistics](image2)
6. Temporal Features

The LiDAR data were not collected during one time frame, but instead occurred over the course of two general acquisition windows in November, 2010 and again in May of 2011 where acquisition days were not consecutive. Although many channels had been drained by the time the LiDAR flights were initiated in the fall acquisition, the remaining data collected the following May will reflect a different flow and capture regime in streams and reservoirs. Such differences across acquisition dates manifested in delivered data with two classified water layers. Where such offsets occurred, the upper water level was manually removed from the ground classification. However, these data were left in the model as default class to retain information on actual water level during acquisition.

7. Projection/Datum and Units

<table>
<thead>
<tr>
<th>Datum</th>
<th>Projection:</th>
<th>UTM Zone 10 N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical:</td>
<td>NAVD88 Geoid03</td>
</tr>
<tr>
<td></td>
<td>Horizontal:</td>
<td>NAD83 (CORS96)</td>
</tr>
<tr>
<td>Units:</td>
<td></td>
<td>meters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datum</th>
<th>Projection:</th>
<th>Oregon State Plane South FIPS 3602 Feet Intl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical:</td>
<td>NAVD88 Geoid03</td>
</tr>
<tr>
<td></td>
<td>Horizontal:</td>
<td>NAD83 (CORS96)</td>
</tr>
<tr>
<td>Units:</td>
<td></td>
<td>feet</td>
</tr>
</tbody>
</table>
8. Deliverables

| **Point Data:** | LAS 1.2 format
| | • All Returns
| | • Ground Returns
| | ASCII text format
| | • Ground Returns |

| **Vector Data:** | • Tile Index of LiDAR Points 0.75’ (ESRI shapefile format)
| | • Raster Tile Index 3.75’ (ESRI shapefile format)
| | • RTK points (ESRI shapefile format)
| | • Ground Control Monuments (ESRI shapefile format)
| | • SBETs (ASCII and ESRI shapefile format) |

| **Raster Data:** | • Elevation Models (1 M resolution)
| | • Bare Earth Model 3.75’ (ESRI Grid format)
| | • High Hit Model 3.75’ (ESRI Grid format)
| | • Intensity Images 3.75’ (.25 M resolution, GEOTIFF format) |

| **Data Report:** | • Full report containing introduction, methodology, and accuracy |

9. Additional deliverables (Oregon State Plane South (Int. ft.))

| **Point Data:** | • Ground Returns (LAS 1.2 format) |
| **Vector Data:** | • Tile Index of LiDAR Points 0.75’ (ESRI shapefile format) |
10. Selected Images

Figure 19. Top image displays a 3D point cloud colored by 2005 NAIP, looking north at the Gerber Reservoir Dam and Gerber Rd. The bottom image displays a 3D point cloud colored by 2005 NAIP, looking west southwest along North Poe Valley Road and downstream along the Lost River.
Figure 20. The top image displays a 3D point cloud colored by 2005 NAIP, looking southeast at a Lost River side channel in the Poe Valley. The bottom image displays a 3D point cloud colored by 2005 NAIP looking north of Miller Creek and a confluence of a smaller tributary on the eastern flank of the Langell Valley, Oregon.
Figure 21. Top image displays a 3D point cloud colored by 2005 NAIP, looking southeast across Harpold Rd. at the Bonanza View Dairy, just south of the town of Bonanza, Oregon. The bottom image is a 3D point cloud colored by 2005 NAIP, looking northeast across a Lost River side channel and cut off at the North Poe Valley Rd.
11. Glossary

1-sigma (σ) Absolute Deviation: Value for which the data are within one standard deviation (approximately 68th percentile) of a normally distributed data set.

1.96-sigma (σ) Absolute Deviation: Value for which the data are within two standard deviations (approximately 95th percentile) of a normally distributed data set.

Root Mean Square Error (RMSE): A statistic used to approximate the difference between real-world points and the LiDAR points. It is calculated by squaring all the values, then taking the average of the squares and taking the square root of the average.

Pulse Rate (PR): The rate at which laser pulses are emitted from the sensor; typically measured as thousands of pulses per second (kHz).

Pulse Returns: For every laser pulse emitted, the Leica ALS 50 Phase II system can record up to four wave forms reflected back to the sensor. Portions of the wave form that return earliest are the highest element in multi-tiered surfaces such as vegetation. Portions of the wave form that return last are the lowest element in multi-tiered surfaces.

Accuracy: The statistical comparison between known (surveyed) points and laser points. Typically measured as the standard deviation (sigma, σ) and root mean square error (RMSE).

Intensity Values: The peak power ratio of the laser return to the emitted laser. It is a function of surface reflectivity.

Data Density: A common measure of LiDAR resolution, measured as points per square meter.

Spot Spacing: Also a measure of LiDAR resolution, measured as the average distance between laser points.

Nadir: A single point or locus of points on the surface of the earth directly below a sensor as it progresses along its flight line.

Scan Angle: The angle from nadir to the edge of the scan, measured in degrees. Laser point accuracy typically decreases as scan angles increase.

Overlap: The area shared between flight lines, typically measured in percents; 100% overlap is essential to ensure complete coverage and reduce laser shadows.

DTM / DEM: These often-interchanged terms refer to models made from laser points. The digital elevation model (DEM) refers to all surfaces, including bare ground and vegetation, while the digital terrain model (DTM) refers only to those points classified as ground.

Real-Time Kinematic (RTK) Survey: GPS surveying is conducted with a GPS base station deployed over a known monument with a radio connection to a GPS rover. Both the base station and rover receive differential GPS data and the baseline correction is solved between the two. This type of ground survey is accurate to 1.5 cm or less.
12. Citations

Appendix A

LiDAR accuracy error sources and solutions:

<table>
<thead>
<tr>
<th>Type of Error</th>
<th>Source</th>
<th>Post Processing Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS (Static/Kinematic)</td>
<td>Long Base Lines</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Poor Satellite Constellation</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Poor Antenna Visibility</td>
<td>Reduce Visibility Mask</td>
</tr>
<tr>
<td>Relative Accuracy</td>
<td>Poor System Calibration</td>
<td>Recalibrate IMU and sensor offsets/settings</td>
</tr>
<tr>
<td></td>
<td>Inaccurate System</td>
<td>None</td>
</tr>
<tr>
<td>Laser Noise</td>
<td>Poor Laser Timing</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Poor Laser Reception</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Poor Laser Power</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Irregular Laser Shape</td>
<td>None</td>
</tr>
</tbody>
</table>

Operational measures taken to improve relative accuracy:

1. **Low Flight Altitude**: Terrain following is employed to maintain a constant above ground level (AGL). Laser horizontal errors are a function of flight altitude above ground (i.e., ~1/3000th AGL flight altitude).
2. **Focus Laser Power at narrow beam footprint**: A laser return must be received by the system above a power threshold to accurately record a measurement. The strength of the laser return is a function of laser emission power, laser footprint, flight altitude and the reflectivity of the target. While surface reflectivity cannot be controlled, laser power can be increased and low flight altitudes can be maintained.
3. **Reduced Scan Angle**: Edge-of-scan data can become inaccurate. The scan angle was reduced to a maximum of ±15° from nadir, creating a narrow swath width and greatly reducing laser shadows from trees and buildings.
4. **Quality GPS**: Flights took place during optimal GPS conditions (e.g., 6 or more satellites and PDOP [Position Dilution of Precision] less than 3.0). Before each flight, the PDOP was determined for the survey day. During all flight times, a dual frequency DGPS base station recording at 1-second epochs was utilized and a maximum baseline length between the aircraft and the control points was less than 19 km (11.5 miles) at all times.
5. **Ground Survey**: Ground survey point accuracy (i.e. <1.5 cm RMSE) occurs during optimal PDOP ranges and targets a minimal baseline distance of 4 miles between GPS rover and base. Robust statistics are, in part, a function of sample size (n) and distribution. Ground survey RTK points are distributed to the extent possible throughout multiple flight lines and across the survey area.
6. **50% Side-Lap (100% Overlap)**: Overlapping areas are optimized for relative accuracy testing. Laser shadowing is minimized to help increase target acquisition from multiple scan angles. Ideally, with a 50% side-lap, the most nadir portion of one flight line coincides with the edge (least nadir) portion of overlapping flight lines. A minimum of 50% side-lap with terrain-followed acquisition prevents data gaps.
7. **Opposing Flight Lines**: All overlapping flight lines are opposing. Pitch, roll and heading errors are amplified by a factor of two relative to the adjacent flight line(s), making misalignments easier to detect and resolve.