STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 1005 STATE OFFICE BUILDING PORTLAND, OREGON 97201

OPEN-FILE REPORT 0-81-8

RECONNAISSANCE GEOCHEMICAL STUDY OF THE QUARTZVILLE MINING DISTRICT, LINN COUNTY, OREGON

by

Steven R. Munts Geologist

Introduction	
Location	۱
Sampling procedures	1
Acknowledgements	3
Data	· 4
References	10
Appendix	11

PLATE

1. Sample location map

in envelope

2

Page

FIGURE

1. General location map of the Quartzville Mining District

TABLES

1.	Geochemical analysis of altered volcanic host rocks in parts per million (ppm)	4
2.	Geochemical analysis of granitic intrusive rocks in parts per million (ppm)	6
3.	Analytical results for lead (Pb), zinc (Zn), and copper (Cu) for soils and sediments in parts per million (ppm)	7

NOTICE

The Oregon Department of Geology and Mineral Industries is releasing this report because the subject matter is consistent with the mission of the Department. To facilitate timely distribution of information, camera-ready copy submitted by the author has not been edited by the staff of the Oregon Department of Geology and Mineral Industries.

INTRODUCTION

Location

The Quartzville Mining District is in Oregon's Western Cascades, approximately 35 miles (56 km) northeast of Sweet Home, Linn County. Access is by paved logging road 26 miles (41 km) east from U.S. Highway 20 past Green Peter Reservoir, and along Quartzville Creek. Dry Gulch, a tributary of Quartzville Creek, drains the area in which the greatest mining activity has taken place.

Sampling Procedures

Standard sampling procedures were utilized. Stream sediment samples consisted of 150 to 200 cc of sand and silt. They were gathered from the upstream ends of gravel bars in the centers of active streams and creeks. All soil samples were collected from the "B" soil horizon; sample volumes were also 150 to 200 cc. Roots, organic debris, and rocks greater than 1 cm in diameter were removed from the sample in the field. Rock samples were chipped from rock outcrops and represented a 5 m to 8 m rectangular surface area. Chips were from unweathered rock; they varied from 0.5 cm to 3.0 cm in diameter, averaging 2 cm. Visible veins were excluded.

NO SCALE

Figure 1. Index maps showing location of Quartzville Mining District area, nearby towns, and access.

Acknowledgements

I wish to gratefully acknowledge the strong support of the Oregon Department of Geology and Mineral Industries, especially the extensive analytical work performed by Mr. Garry Baxter, chemist. This project received monetary support from Dr. Cyrus Field, Department of Geology, Oregon State University. These funds financed analytical work conducted by Rocky Mountain Geochemical Corporation.

This article was technically reviewed by Mr. M. K. Ferguson and Mr. Richard Gaps.

The following tables contain analytical data obtained in this study and are arranged by sample type (rock, soil, and sediment).

	``					
Sample						
No.	Cu	Pb	Zn	Мо	Ag	Rock Type
2	20	20	60	49	1	Tuff
4	10	10	55	8	-1	Tuff
5	10	20	35	-1	-1	Tuff
1548	10	10	45	-1	-1	Lapilli Tuff
1557	190	10	75	-1	-1	Lapilli Tuff
1560	35	-10	95	-1	-1	Lapilli Tuff
1562	25	-10	55	-1	-1	Andesite
1564 A	10	-10	45	1	-1	Tuff
1616	55	30	100	-1	1	Lapilli Tuff
1627	50	10	570	-1	-1	Tuff
1628	15	20	25	-1	-1	Andesite
1628 B	10	10	55	1	-1	Andesite
1629	10	10	30	-1	-1	Lapilli Tuff
1631	5	-10	45	-1	-1	Basalt
1857	10	-10	25	9	-1	Basalt Dike
1869	50	10	50	-1	-1	Lapilli Tuff
1876	10	-10	50	-1	-1	Lapilli Tuff
1889	40	10	65		-1	Andesite
1890	40	50	90	-1	-1	Basalt
1891	10	-10	40	1	-1	Basalt
1898	35	10	85	-1	-1	Lapilli Tuff
1899	60	750	120	-1	-1	Lapilli Tuff
1901	5	10	35	1	-1	Basalt
2032	5	10	45	-1	-1	Andesite
2062	5	10	20	1	-1	Basalt
2066	20	-10	25	-1	1	Basalt
3093	70	20 [±]	210	-1	1	Basalt
4062	10	-10	15	1	1	Rhyodacite

4

TABLE 1. Geochemical analyses of altered volcanic host rocks in parts per million (ppm). Analyses performed by Rocky Mountain Geochemical Corporation.

DATA

Sample						
No.	Cu	Pb	Zn	Мо	Ag	Rock Type
A	20	10	30	-1	1	Rhyolite
В	5	10	15	-1	-1	Rhyolite
Ε	15	-10	45	-1	-1	Rhyolite
F	15	-10	50	-1	-1	Rhyolite
G	15	10	65	-1	1	Rhyolite
Н	20	60	125	9	1	Rhyolite
Ι	15	50	60	2	1	Rhyolite
J	5	10	220	-1	-1	Lapilli Tuff
K	25	10	60	1	1	Lapilli Tuff
L	5	50	40	15	1	Lapilli Tuff
Μ	15	1010	95	12	1	Lapilli Tuff
N	20	10	60	-1	1	Lapilli Tuff
0	20	10	70	-1	ı	Lapilli Tuff
Р	15	20	90	-1	ı	Lapilli Tuff
Q	15	10	80	1	1	Lapilli Tuff
R	20	10	70	-1	-1	Lapilli Tuff
9004	160	1040	140	-1	2	Andesite
9005	10	10	30	34	-1	Andesite
9006	10	10	20	1	-1	Quartz Latite

Table 1 continued

-

Sample	_		_		
NO.	Cu	PD	Zn	Мо	Ag
440	90	10	90	1	1
1084	25	10	30	1	-1
1118	30	-10	35	-1	. –1
1198	75	20	115	-1	1
1315	55	20	75	-1	-1
1330	160	40	120	-1	-1
1350	200	30	115	1	-1
1357	80	10	80	-1	-1
1401	45	480	840	1	-1
1424	40	20	65	-1	-1
1558	35	10	100	-1	-1
1564 B	10	-10	50	-1	-1
1704	5	-10	50	-1	-1
1816	30	10	70	1	-1
1860	15	-10	20	1	-1
1866	10	-10	10	1	-1
1871	50	10	35	1	-1
1895	65	30	190	-1	-1
2000	25	10	55	-1	-1
1247	10	20	80	-1	-1
2077 A	15	10	20	-1	-1
2077 B	15	-10	10	-1	1
3074	40	10	70	14	-1
9000	45	10	75	-1	-1
9001	10	10	90	-1	-1
9002	5	-10	30	-1	-1
9003	50	30	170	-1	1

TABLE 2. Geochemical analyses of granitic intrusive rocks in parts per million (ppm). Analyses performed by Rocky Mountain Geochemical Corporation.

TABLE 3.	Analytical results for lead (Pb), zinc (Zn), and copper (Cu) for
	soils and sediments in parts per million (ppm). Soils marked
	by *; (-) no data. Samples analyzed by Oregon Department of Geology
	and Mineral Industries.

Sample No.	Pb	Zn	Cu	Sample No.	Pb	Zn	
54	22	101	37	387	103	427	
55	22	101	36	397	31	121	
58	40	155	34	398	28	116	
89	52	215	40	400	17	142	
95	25	145	32	404	11	84	
96	33	168	31	411	56	105	
99	11	100	29	*416	82	163	
117	16	100	28	423	181	400	
*129	18	85	33	427	37	111	
152	42	121	36	435	35	126	
156	263	286	55	439	22	105	
157	34	160	39	446	14	79	
158	74	370	44	447	13	76	
170	51	163	37	449	16	95	
179	73	434	51	451	29	131	
180	90	229	37	453	182	231	
*301	30	148	36	454	171	315	
*302	16	118	30	470	2720	271	
311	19	100	35	*474	28	160	
*335	5	30	25	*546	24	168	
339	30	126	33	*548	134	165	
*345	910	1210	103	*549	71	135	
*346	24	168	43	*550	67	147	
*348	12	121	23	*553	115	352	
359	20	19	46	*554	26	299	
360	14	113	56	*555	550	408	
375	310	643	52	557	90	176	
382	350	507	58	*558	48	147	

Sample No.	Pb	Zn	Cu	Sample No.	Pb	Zn	Cu
573	142	458	45	*988	21	100	40
596	80	90	46	*994	23	124	29
*604	32	91	30	*997	16	89	30
633	76	177	34	*998	11	102	16
634	62	184	34	1008	7	89	.43
645	40	116	46	1012	970	575	113
654	41	168	37	1013	135	270	55
656	14	58	27	1019	28	173	27
663	110	382	56	1047	5	92	16
666	24	105	33	*1053	27	126	48
667	28	79	36	*1055	27	128	45
727	58	164	52	1064	260	524	59
728	42	111	43	1068	2060	924	137
*730	18	100	39	1075	92	240	42
*732	22	100	33	1104	170	676	50
734	31	118	40	1110	28	145	32
*738	6000	525	229	1119	28	142	39
*745	165	305	50	1123	23	166	38
*750	20	134	44	1128	19	116	28
*757	42	87	35	1130	17	82	31
802	28	110	39	1136	20	132	27
809	173	410	46	1137	19	140	31
842	715	-	112	1138	25	134	32
848	88	184	79	1140	39	173	38
860	199	389	68	1145	16	121	28
866	25	78	31	1147	20	121	30
980	19	78	48	1152	46	278	34
984	25	83	40	1155	16	108	32
985	25	102	32	1157	28	126	34
986	13	79	37	*1161	20	80	27

TABLE 3, continued

Pb	Zn	Cu	Sample No.	Pb	Zn
15	86	27	*1192	15	385
15	60	32	1194	145	178
15	52	20	1208	26	142
20	47	16	1209	28	134
30	112	28	1211	30	122
25	97	14	1212	300	121
15	75	38	1213	105	137
15	66	16	1214	99	179
30	103	14	1219	120	368
	Pb 15 15 15 20 30 25 15 15 30	Pb Zn 15 86 15 60 15 52 20 47 30 112 25 97 15 75 15 66 30 103	Pb Zn Cu 15 86 27 15 60 32 15 52 20 20 47 16 30 112 28 25 97 14 15 75 38 15 66 16 30 103 14	Pb Zn Cu Sample No. 15 86 27 *1192 15 60 32 1194 15 52 20 1208 20 47 16 1209 30 112 28 1211 25 97 14 1212 15 75 38 1213 15 66 16 1214 30 103 14 1219	Pb Zn Cu Sample No. Pb 15 86 27 *1192 15 15 60 32 1194 145 15 52 20 1208 26 20 47 16 1209 28 30 112 28 1211 30 25 97 14 1212 300 15 75 38 1213 105 15 66 16 1214 99 30 103 14 1219 120

TABLE 3, continued

Cu

References

Ward, F. N., Nakagawa, H. M., Harms, T. F., and Van Sickle, G. H., 1969, Atomic absorption methods of analyses useful in geochemical exploration: U.S. Geological Survey Bulletin 1289, 45 p.

Appendix 1

Rocky Mountain Geochemical Corporation's Analytical Methods.

These methods use a partial digestion procedure.

DIGESTION METHODS

"HC10₄ Digestion

The following digestion technique is for the determination of Cu, Pb, Zn, Ni, Co, Cd, Bi, Mo, As, Cr and U_30_8 . This digestion is for routine geochemical analysis with + 10 % analytical precision.

- 1. Weigh 0.500 gr -80 mesh or pulp into 25 ml calibrated tube.
- 2. Add 5 ml reagent grade HClO₄ and mix.
- 3. Place tubes in rack on thermolyne hot plate at 250° setting. Increase temperature every 30 minutes in 50 *increments to 450° setting and allow HClO₄ to fume for at least one hour at 190-195°C.
- *Note: for samples with organic material increase temperature cautiously until dark organic color has been replaced with straw yellow color.
 - 4. Remove samples, allow to cool and add approximately 5 mls H₂O, swirl to mix and allow to cool.
 - 5. Dilute to 25 ml volume.
 - 6. Cap and shake and allow to settle.
- **Note: if samples are 0.50% or higher a total digestion technique is recommended. (For sample of 0.50% Pb or Zn the use of the acetate digestion is recommended.)" (Cardwell, 1980, written communication)

MOLYBDENUM

"(by atomic absorption)

Pipet blank, 2-100 std, 2-300, 1-500 & 1-1000 ppm std. into separate 18 x 150 mm tubes and place in 50 tube rack for shaking.

Pipet 5 mls sample solution into 18 x 150 mm tube placed in 50 tube rack for shaking.

Add 3 mls Moly Reagent.

Add 3 mls 10% SNC1₂.

Add 5 mls Amyl Acetate.

Stopper in shaker for 2 minutes.

Remove caps.

Read on A.A... aspirating saturated amyl acetate as a blank and using a N₂O flame.

Wavelength	3133
Slit	4
Current	20 mo

Set 300 std. to read 300 ppm - should be linear down to 1 ppm.

For above 300 set 500 ppm std.

Over 500 ppm turn burner to cut path length; set 1000 ppm to read 200.

STANDARDS

100	ppm	std.	-	20	mls	1	mg/m1	Мо	-	add	200	m1	HC10 ₄ ,	dilute	to	1L,	shake.
300	ppm	std.	-	6	mls	1	mg/m1	Мо		н	н	II	II	II	•		н
500	ppm	std.	-	10	mls	1	mg/ml	Мо		u	II	11	II	II	I	1 11	II
1000	ppm	std.	-	20	mls	1	mg/ml	Мо		n	u	u	н	н	I		н

REAGENTS:

HClO₄: 70% conc. reagent grade perchloric acid.

Iron Solution: 1% Fe, 10 grams iron wire weighed and digest in 500 mls
HCl. When solution is cool dilute to l liter. Final
is l:l HCl." (Cardwell, 1980, written communication)

Molybdenum a.a. cont'd

"REAGENTS

- Moly Reagent: Dissolve 100 grams NaF (sodium fluoride) in 2,000 ml distilled water, allow to settle and decant into a 5 liter beaker or polyethylene bottle, discarding settlings. Dissolve 300 grams NaCNs (sodium thiocyanate) in 3,000 ml distilled water in a large beaker. Add this solution to the 5 liter container and mix with NaF solution, shake well.
- 10% SnCl₂ Weigh 200 grams stannous chloride into 1 liter size beaker. Dissolve in 165 ml conc. HCl. Fill beaker up to 800-ml line with distilled water while stirring to mix. Transfer solution to a 2-liter glass jug calibrated to 2 liters and dilute to volume. DO NOT RINSE BEAKER WITH DISTILLED WATER AND ADD TO BOTTLE. (It may cause solution to become cloudy.) The beaker used to make SnCl₂ must not be used for anything else. Wash it immediately and set aside for future use. Store SnCl₂ in refrigerator.

Reagents: Same as previous except Amyl Acetate; industrial grade." (Cardwell, 1980, written communication)

Appendix 2

Summary of Oregon DOGAMI analytical procedures.

The Oregon DOGAMI analyzed all soil and sediment samples in this project. The analytical procedure used in this work is described in detail by Ward and others (1969). For this suite of samples, one gram of the minus 80-mesh fraction of each sample was dissolved in a hot concentrated nitric acid solution. This solution was cooled, filtered and analyzed by a Perkin-Elmer 290B Atomic Absorption instrument; data were obtained and recorded on a strip chart recorder.

STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES DONALD A. HULL, STATE GEOLOGIST

•

ţ

OPEN FILE REPORT 0-81-8

Geochemical Sample Location Map

•••

SCALE | 12,000

SYMBOLS WITH SAMPLE NUMBERS: 004 SOIL X1315 ROCK STREAM SEDIMENT

Drafted by R.C.D., May 1977.