OPEN-FILE REPORT 0-93-2
PRELIMINARY GEOLOGIC MAP OF THE
BURNT FLAT QUADRANGLE
MALHEUR COUNTY, OREGON

By Mark L. Ferns/Christopher Williams

1993

This unpublished Open-File Report has not been reviewed and
may not meet all Oregon Department of Geology and Mineral
Industries' standards.

Field work conducted in 1991/1992
Map Scale: 1:24,000

Funding Statement: Funded jointly by the Oregon Department
of Geology and Mineral Industries, the Oregon State Lottery,
and the U. S. Geological Survey COGEOGRAPH Program as part of
a cooperative effort to map the west half of the 1° by 2°
Boise sheet, eastern, Oregon.
Alluvium (Quaternary) Unconsolidated deposits of sand and gravel along modern stream channels.

Alluvial fan deposits (Quaternary) Mainly unconsolidated and poorly sorted accumulations of coarse gravel deposited along the flanks of Cedar Mountain. Includes deposits of colluvium and slope wash along the north flank of Burnt Flat.

Lacustrine sediments (Quaternary) Mainly unconsolidated lacustrine deposits of light colored fine sand and silt, may include evaporite deposits.

Lacustrine and eolian deposits (Quaternary) Mainly unconsolidated lacustrine deposits of pale brown fine to medium grained sand deposited along the south margin of Piute Lake. Includes rounded gravels along ancient shorelines and wave cut terraces. Also includes higher elevation deposits of wind-blown sand marginal to the shoreline.

Basalt and basaltic andesite flows of Cedar Mountain (Miocene) Mainly dark bluish-black, plagioclase-phyric basaltic andesites. Includes aphyric platy andesites and glomeroporphyritic flows with olivine and plagioclase phenocrysts and hypersthene-phyric basaltic andesites.

Tuffaceous siltstones, sandstones, and ashflow tuff (Late Miocene) Mainly pale yellowish-white to white, tuffaceous siltstones. Includes a light gray vitric welded ashflow tuff about 3 feet thick which is locally exposed near the top of the unit. Ashflow contains less than 1% lithic fragments and about 3% sanidine and quartz phenocrysts approximately 3 mm in diameter. Accessory minerals include a green pleochroic clinopyroxene. The ashflow is peralkaline with normative acmite (Analyses, Table 1) and is chemically and petrographically identical to the 9.2 Ma Devine Canyon Tuff mapped by Greene (1973) west of Crowley.

Tuffaceous siltstones and diatomite (Middle to Late Miocene) Light gray to bluish-gray waterlain vitric tuffs and interbedded white diatomite and diatomaceous tuffs. Upper part of unit includes pumaceous gravels with abundant basalt, rhyolite, and dull to glossy black obsidian clasts. Equivalent to the Butte Creek Volcanic Sandstone of Kittleman and others (1965, 1967). Unit is about 100 feet thick in the quadrangle.

Mafic flows of Mooreville (Middle - Late Miocene) Bluish-black to bluish-gray, platy tholeiitic andesite, basaltic andesite, and basalt flows.
Includes distinctive glomeroporphyritic flows with plagioclase phenocrysts as large as 2 cm in diameter, plagioclase and orthopyroxene glomerocrysts, and rare quartz xenocrysts. At least three flows with an aggregate thickness of 200 feet exposed in the Mustang Butte quadrangle to the south. Upper flows include diktysaxonite olivine basalts. Unit includes tholeiitic basalts and ferroandesites (Ferns, 1992; Ferns and Williams, 1993).

Intermediate lavas of Fangollano (Middle to Late Miocene) Bluish black, coarsely phryic, porphyritic vitrophyre of ferrolatite composition. Unit is a single flow, with about 20% phenocrysts as large as 2 cm in diameter. Typically contains about 5% xenoliths of olivine basalt and diorite. Phenocrysts and/or xenocrysts are commonly partially resorbed and include plagioclase, potassium feldspar, augite, orthopyroxene, and olivine. Flow is a ferro-latite in composition (65.4% SiO2; 14.2% Al2O3; 5.81% FeO%; 3.73% Na2O, 3.80% K2O) and is petrographically and chemically similar to the Square Mountain ferrolatite (Bonnichsen and others, 1988).

Wildcat Creek Welded Ash-Flow Tuff (middle Miocene?) Pale red to grayish-red and light gray, welded lithic ashflow tuff. Mainly crystal-poor, with sparse phenocrysts of sanidine, plagioclase, and clinopyroxene. Typically contains abundant flattened pumice clasts. Chemically a low-silica peralkaline rhyolite with 400 ppm Zr (Ferns and Williams, 1993; Evans, unpublished analyses). Underlies the Devine Canyon Tuff and overlies Tbcm flows. Includes the Wildcat Creek Welded Ashflow Tuff as defined by Kittleman and others (1965, 1967). Also includes parts of the unnamed tuffs near Crowley as mapped by Kittleman and others (1965, 1967).

Mafic vent complex (middle Miocene) Poorly consolidated accumulation of red and black scoria and cinders with interbedded lava flows. Scoria includes black and red bombs up to 1 meter in thickness. Unit includes interbedded lava flows and is interpreted to be a vent for the Tba flows to the north. Associated lava flows at the vent are high silica basalts (Analyses BAB-321, Table 1).

Basalt, basaltic andesite and andesite flows (middle to upper Miocene) Mainly red-weathering, gray to bluish-gray, sparsely phryic, holocrystalline lava flows. Includes trachytic andesite flows with plagioclase and rare olivine and clinopyroxene phenocrysts and pitchstone andesite with orthopyroxene microphenocrysts. Unit is made up of
calc-alkaline lava flows ranging from high-silica basalt (SiO₂ > 52%) to high-silica andesite (62% SiO₂) (Brooks, 1992, Ferns and Williams, 1993). Includes at least 3 flows exposed northeast of Turnbull Mountain, where unit is about 200 feet thick and unconformably overlies middle Miocene basalts of unit Tmbg. Middle Miocene age based on stratigraphic position beneath Barstovian vertebrate locality near Skull Springs, north of the quadrangle boundary. (Kittleman and others, 1965). Unit is correlative in part with the "unnamed igneous complex" of Kittleman and others (1965, 1967) and may be equivalent to the "red andesite" unit mapped by Brooks (1992) in the Rufino Butte quadrangle to the northeast.

Littlefield Rhyolite (Middle to Late Miocene)

Purplish-gray, porphyritic rhyolite lava flow, weathers to shades of red. Generally a lithoidal rhyolite with approximately 5-10% plagioclase phenocrysts. Isolated exposures in northeastern part of the quadrangle are lithologically and chemically similar to the large rhyolite lava flows mapped by Evans (1990) and Ferns and O'Brien (1992) to the north. Equivalent to the Littlefield Rhyolite of Kittleman and others (1965, 1967).

Basalt of Malheur Gorge (middle Miocene)

Dark-gray, coarsely plagioclase-phyric lava flows and autoclastic breccias that weather to various shades of red and brown and form ledges 3 to 12 m thick. Includes massive basalt, platy basalt, and vesicular, glassy basalt breccias. Lower part of section on Road Canyon includes coarsely plagioclase-phyric basalt flows with as much as 50% plagioclase phenocrysts as long as 2.5 cm. Stratigraphically higher flows at Road Canyon are plagi and aphyric. Includes holocrystalline and hyalocrystalline flows with sparse phenocrysts of plagioclase (labradorite), olivine, and ilmenite. Over 250 m of flows with interbedded palagonitic sediments are exposed on Road Canyon where the unit includes thin, lenticular deposits of subaerial tuff and scoria. Coarsely plagioclase-phyric flows on Road Canyon contain about 47.8% to 49% SiO₂, 17.0% to 20.1% Al₂O₃, and 9.2% to 12.0% Fe₂O₃ (Ferns and Williams, 1993a, b). Middle Miocene age based on K/Ar dates of about 15.5 - 17 Ma (Fiebelkorn and others, 1982). Western exposures are correlative with the Steens Basalt of Fuller (1931), the "unnamed igneous complex" of Kittleman and others, (1965, 1967) and the basalt of Malheur Gorge of Evans (1990).
The map area lies along the western edge of the Ore-Ida Graben (Ferns and others, 1993a, b). Oldest rocks exposed in the quadrangle are aphyric and plagioclase-phyric basalts (Tbmg) which form a section over 250 meters thick. Two different lithologies are exposed on Road Canyon; a lower unit made up mainly of aphyric basalts/andesites; and an upper unit made up of interbedded aphyric and (predominantly) coarsely plagioclase-phyric flows similar in chemistry and petrography to the Steens Basalt of Fuller (1931). Both lithologies appear as flows and autobreccias with intervening weathered zones underlain by palagonitized tuffs.

The unit is part of the extensive middle Miocene tholeiitic flood basalt province that cover much of eastern Oregon and lies in the transition zone between the plagioclase-phyric Steens Basalt to the south and the more voluminous Columbia River Basalt Group to the north. Abundance of palagonitized autobreccias and tuffs suggest that the flows at Road Canyon interacted with water.

A rhyolite flow (Tr) exposed east of Turnbull Mountain is the southernmost exposure of the Littlefield Rhyolite of Kittleman and others (1965, 1967). The rhyolite is one of a series of large-volume rhyolite lava flows that erupted from vents to the north, contemporaneous with initial subsidence along western edge of the Ore-Ida Graben.

An erosional unconformity separates Tbmg and Tr from younger volcanic units. Calc-alkaline basaltic andesite and andesite flows (Tba) erupted from vents (Tbv) to the north. Ttwc, the Wildcat Creek Welded Ash-Flow Tuff (Kittleman and others, 1965, 1967) erupted from a vent to the northwest, following the main pulse of calc-alkaline volcanism.

Younger rhyolite volcanism to the west (Ferns and Williams, 1993) was accompanied by renewed tholeiitic magmatism at about 12 Ma. Olivine basalt and plagioclase-phyric ferroandesites (Tbmv) partially covered an areally-restricted ferrolatite flow (Tlf).

Tbcm flows (mainly basaltic andesites and andesites) from a large mafic shield volcano at Cedar Mountain to the east (Ferns, 1992a) advanced westward into a shallow basin, partially filled with Tst sediments. Lowlands peripheral to the volcano were covered by the distal edge of the Devine Canyon Ash-Flow Tuff at about 9.2 Ma.
Large pluvial lakes (Qss and Qsl) covered much of the quadrangle in the late Pleistocene. The sand and gravel facies (Qss) mark the north shoreline of the large pluvial Turnbull Lake, which extended to the southwest. This lake partially-filled a large, Late Tertiary structural basin that formed along the east edge of the Steens Mountain. Colluvium and alluvial fan deposits (Qf) in the southeastern part of the quadrangle may cover an outlet to the lake, down the ancestral Owyhee River to the northeast.
MAP SYMBOLS

Contact -- approximately located

Fault contact -- dashed where approximately located, dotted where concealed. Ball and bar on down throw side

Strike and dip of beds

Location of whole rock sample analyzed in Table 1
REFERENCES

Brooks, H.C. 1992, Preliminary geologic map of the Rufino Butte Quadrangle, Malheur County, Oregon: Oregon Department of Geology and Mineral Industries Open-File Map O-92-17, scale 1:24,000

Ferns, M.L., 1992a, Preliminary geologic map of the Mustang Butte Quadrangle, Malheur County, Oregon: Oregon Department of Geology and Mineral Industries Open-File Map O-92-11, scale 1:24,000

Ferns, M.L., 1992b, Preliminary geologic map of the Mustang Butte Quadrangle, Malheur County, Oregon: Oregon Department of Geology and Mineral Industries Open-File Map O-92-11, scale 1:24,000

Ferns, M.L., Evans, J.G., and Cummings, M.L., 1993b, Geologic Map of the Mahogany Mountain 1:100,000 Quadrangle, Malheur County Oregon and Owyhee County Idaho: Oregon Department of Geology and Mineral
Industries Geological Map Series GMS-78, scale 1:100,000.

MAP SYMBOLS

Contact -- approximately located

Fault contact -- dashed where approximately
located, dotted where concealed. Ball and bar on
down throw side

Strike and dip of beds

Location of whole rock sample analyzed in
Table 1
Table 1: Major and Trace Element Analyses for Unaltered Rocks, Borst Flat Quadrangle 042-2

Sample	1/4	1/4 Sec	7.3 R.E.	Elev.	Lithology	Msp	SiO2	Al2O3	TiO2	Fe2O3	Na2O	CaO	MgO	K2O	Na2O	F2O5	L01	Cr	Co	Ni	Cu	Zn	Mo	Br	Li						
A22-111	SW	SW	35	26	40	Andesite	Tuff	Tdv	78.5	10.6	0.228	1.88	0.326	0.14	3.67	15	35	65	215	194	11	194	137	95	1.5	27					
A22-124	NE	NE	29	24	40	Andesite	Tuff	Tdv	81.1	15.9	1.06	1.75	0.13	2.07	2.67	5.61	1.0	1.07	14	17	20	82	113	89	36	76	11	14%	1%		
B40-811	SW	NE	1a	2a	40	Andesite	Tuff	Tdv	55.4	5.7	1.48	9.04	0.16	6.71	3.16	1.94	0.5	1	22	29	43	101	19	35	54	24	87	98	1%	0%	
G6o-317	SE	SE	25	30	40	Andesite	Tuff	Tdv	69	12.2	0.26	3.6	0.05	1.25	0.48	2.12	1.0	0.95	6	8	2	142	167	20	115	60	20	46	6	56	6
G6o-316	NE	SE	28	28	40	Andesite	Tuff	Tdv	55.7	16	1.7	4.66	0.15	2.73	3.2	2.30	0.6	0.61	1.2	27	31	45	109	42	55	55	193	49	1%	0%	
B40-219	SW	SW	20	25	40	Andesite	Tuff	Tdv	47.6	15.1	1.42	8.8	0.19	8.56	5.04	0.64	2.01	0.39	1	-	-	-	17	40	30	102	26	120	-		
E60-320	NE	SW	29	25	40	Andesite	Tuff	Tdv	30.3	13.8	1.97	8.25	0.19	3.97	1.34	3.3	0.47	1.45	-	-	-	-	95	29	50	62	157	-			
B40-811	NE	NE	2a	2a	40	Andesite	Tuff	Tdv	35.2	15.5	1.45	10.3	0.18	7.25	4.18	1.68	2.87	0.9	2.3	-	-	-	-	46	155	39	167	82	84	-	
B40-202	NW	SW	35	25	40	Andesite	Tuff	Tdv	74.9	12	0.32	2.37	0.04	3.22	0.16	4.65	0.41	0.04	1	1.15	-	-	-	-	14	9	34	50	150	-	
B40-203	NW	NE	28	28	40	Andesite	Tuff	Tdv	52.5	15	1.5	6.02	0.16	6.65	3.21	7.20	3.67	0.57	0.85	-	-	-	-	32	38	30	21	16	97	-	