The Ore Bin
Published Monthly By

STATE OF OREGON
DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES
Head Office: 1069 State Office Bldg., Portland, Oregon - 97201
Telephone: [503] - 229-5580

FIELD OFFICES
2033 First Street 521 N. E. "E" Street
Baker 97814 Grants Pass 97526

Subscription Rate
1 year - $2.00; 3 years - $5.00
Available back issues - $.25 each

Second class postage paid at Portland, Oregon

GOVERNING BOARD
R. W. deWeese, Portland, Chairman
William E. Miller, Bend
H. Lyle Van Gordon, Grants Pass

STATE GEOLOGIST
R. E. Corcoran

GEOLOGISTS IN CHARGE OF FIELD OFFICES
Howard C. Brooks, Baker Len Ramp, Grants Pass

Permission is granted to reprint information contained herein.
Credit given the State of Oregon Department of Geology and Mineral Industries
for compiling this information will be appreciated.
OREGON'S MINERAL AND METALLURGICAL INDUSTRY IN 1974

Ralph S. Mason, Deputy State Geologist
Oregon Department of Geology and Mineral Industries

The value of raw minerals produced in the State during 1974 increased 11.3 percent, eclipsing a gain of nearly 9 percent for the previous year. Preliminary compilations by the U.S. Bureau of Mines show mineral production of $90,703,000 in 1974. Of this amount, stone and sand and gravel accounted for 76 percent. In its annual canvass, the U.S. Bureau of Mines does not include the value, estimated to be in excess of $700 million annually, of primary metals produced in the State, such as iron and steel, aluminum, ferronickel, and the various exotics.

In a year marked by rapid increases in the value of gold and silver, mining companies showed renewed interest in Oregon mines. At the recreational level, the interest in gold was intense; if the economy worsens, an even greater number of "recreational" prospectors can be expected.

Industrial Minerals

Economic stresses and environmental constraints during 1974 resulted in a slight lowering in volume of aggregate production and a somewhat higher cost. Reduction in the amount of road and highway construction and maintenance, engineering works, and commercial and domestic construction accounted for a decline of 2.14 million tons of aggregate produced. An increase in value of $3.54 million came as a result of substantial raises in costs of all forms of energy, the price of money, and the ever-longer hauls from pit to market.

The industrial minerals industry in the State generally had a fairly quiet year. 1974 was a time of belt-tightening, increasing regulation, decreasing availability of resources, and a rising level of resistance from land and home owners located near aggregate production. Lack of adequate
SOME OF OREGON'S MINERALS AT A GLANCE

<table>
<thead>
<tr>
<th>Mineral</th>
<th>1973</th>
<th>1974*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clays</td>
<td>$ 291,000</td>
<td>$ 196,000</td>
</tr>
<tr>
<td>Gemstones</td>
<td>700,000</td>
<td>650,000</td>
</tr>
<tr>
<td>Lime</td>
<td>2,552,000</td>
<td>2,400,000</td>
</tr>
<tr>
<td>Nickel</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Pumice, volcanic cinder</td>
<td>1,902,000</td>
<td>2,090,000</td>
</tr>
<tr>
<td>Sand and gravel</td>
<td>32,751,000</td>
<td>37,042,000</td>
</tr>
<tr>
<td>Silver</td>
<td>3,000</td>
<td>W</td>
</tr>
<tr>
<td>Stone</td>
<td>21,843,000</td>
<td>22,091,000</td>
</tr>
</tbody>
</table>

Value of items that cannot be disclosed: cement, gold, copper, diatomite, talc, tungsten, and values indicated by symbol "W"

<table>
<thead>
<tr>
<th></th>
<th>21,424,000</th>
<th>26,234,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>$81,466,000</td>
<td>$90,703,000</td>
</tr>
</tbody>
</table>

W = Withheld
* Preliminary

BY COMPARISON

<table>
<thead>
<tr>
<th>State</th>
<th>1972 Value</th>
<th>Value per capita</th>
<th>Rank per capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>$1,851,365,000</td>
<td>$ 93</td>
<td>25</td>
</tr>
<tr>
<td>Wyoming</td>
<td>746,743,000</td>
<td>2,249</td>
<td>1</td>
</tr>
<tr>
<td>Nevada</td>
<td>181,702,000</td>
<td>372</td>
<td>11</td>
</tr>
<tr>
<td>Washington</td>
<td>109,806,000</td>
<td>32</td>
<td>38</td>
</tr>
<tr>
<td>Idaho</td>
<td>106,206,000</td>
<td>149</td>
<td>17</td>
</tr>
<tr>
<td>Oregon</td>
<td>76,516,000</td>
<td>37</td>
<td>36</td>
</tr>
<tr>
<td>U.S. TOTAL</td>
<td>$32,217,000,000</td>
<td>159</td>
<td></td>
</tr>
</tbody>
</table>
land-use planning plus an under-funded mined-land reclamation act were responsible for some of the industry's problems.

Other industrial minerals produced in the State included: expansible and brick-and-tile clays, bentonite, volcanic cinders and pumice, talc, limestone, cement, and silica. Oregon maintained its prominent position in the production of semi-precious gems, with the largest portion of the stones mined by amateurs or semi-professionals. Although no accurate canvass of the semi-precious gem industry is possible, it is estimated at about $750,000 annually.

The Metals

Although gold commanded world-wide attention during 1974 with its great rise in price, the impact in the State was moderate, at least at the professional level. Several mines in the Baker area of northeastern Oregon were reopened, and sampling and re-evaluation programs were underway. Great interest was displayed by the recreationist and part-time gold miner. Late in the year, a mini-gold-rush developed and hundreds of claims were staked in Baker County.

Most of the gold produced in the past in the State has come from two widely separated areas, one in northeastern and the other in southwestern Oregon. Starting in 1850 with a discovery of placer gold in Josephine Creek at its confluence with the Illinois River in Josephine County, the search widened rapidly over the next 15 years, during which time most of the known placers were discovered. Following the decline of the easily won placer gold, the development of lode deposits proceeded briskly, with most of the important mines being discovered as early as the 1880's.

The high point in gold production occurred in 1940 with a total of slightly over 105,000 fine troy ounces. The forced closure of all gold mines in 1941 by Executive Order L-208 abruptly blunted this rapid rise. For the past 3 years, gold has not even appeared in the U.S. Bureau of Mine's statistics on the State's mineral production. Undoubtedly some gold is being recovered by the small army of non-professionals, but those who find it are not talking.

Hanna mining Co. continued to produce ferronickel at its Riddle smelter at Nickel Mountain in Douglas County. Improved plant efficiency and an increase in the price of nickel made it economic to mine nickel silicate ore of slightly lower grade than was mined in previous years. The Department of Geology and Mineral Industries, in cooperation with the U.S. Bureau of Mines, conducted a nickel study in southwestern Oregon during the year. The study is designed to identify all known and potential areas of nickel-bearing laterites in the State. Numerous samples were collected and are being analyzed in the Department's laboratories.

* * * * *
OIL AND GAS EXPLORATION IN 1974

V. C. Newton, Jr.
Petroleum Engineer, Oregon Dept. Geology and Mineral Industries

No new permits were issued for oil and gas drilling by the Department in 1974; however, increased interest in petroleum prospects of the State was reflected by renewed leasing activity and a steady stream of inquiries for geological data from the Department. Activity has been at a low ebb for the past 7 years, following termination of continental shelf exploration. Oregon is still one of the thirteen non-producing states.

Status of Federal Lands

Secretary of Interior Rogers Morton placed a moratorium on oil and gas leasing of Federal lands in Oregon in 1971 following objections by environmental groups to Texaco’s drilling of a wildcat well in eastern Oregon. The intervenors wanted the Bureau of Land Management to initiate full impact procedure before issuing oil and gas leases. The BLM held the view that the full hearings process was not necessary in every case but should be applied when major conflicts arose. Officials of the BLM reported in December 1974 that the moratorium covering onshore leases has been lifted by Secretary Morton. The BLM will make regional environmental analyses in Oregon to determine what effect exploration and development will have on the environment. Specific studies will then be made for each area applied for to determine if protective stipulations are needed in the lease contract. This is the procedure now being used in other states. The four-year delay in issuing Federal leases has cost Oregon counties an estimated $300,000 in lease rentals.

The major portion of Federal lands off the Oregon Coast is not scheduled for leasing by the U.S. Department of the Interior until after 1980. Should oil be found on these outer continental shelf lands, it will not reach refineries before 1985 at the earliest. Environmental concern is currently the main factor in delaying the work, but availability of capital to fund expensive offshore development probably would slow the pace of exploration even if the environmental delays were not present. A discovery of oil and gas on Oregon submerged lands, however, would force earlier lease sales on adjacent Federal lands. In the meantime, offshore drilling and production technologies are being perfected in the North Sea operations.

Onshore Prospects

Much of the state is underlain by marine rocks ranging in age from Devonian to late Tertiary, and detailed geological and geophysical studies
in these areas should reveal many prospective drill sites. The Tertiary marine basin in western Oregon covers an estimated 25,000 square miles. Pre-Tertiary marine rocks, although fairly extensive, have a covering of younger rocks in all but the uplifted regions, and very few deep test holes have been put down thus far to allow reasonable subsurface correlation. Geology of Oregon, like that of other states along the western margin of North America, is typically complex owing to tectonism and volcanism. Volcanic rocks overlie and are interbedded with most of the marine sediments in Oregon. Three-quarters of the State is covered by Cenozoic volcanic rock which obscures structural features as well as the physical character of the older rocks.

In the search for oil and gas, 22 deep holes have been put down in western Oregon and 12 in eastern Oregon. Many of these holes encountered shows of hydrocarbons (see Figure 1). Oil was recovered in formation tests from only one hole, but cores and cuttings from 7 other deep tests showed oil was present in at least trace amounts.

Leasing Areas

Petroleum exploration onshore is divided between the western Tertiary basin and the Mesozoic-Paleozoic prospects in eastern Oregon. Mobil Oil Company is building a major lease position in the western part of the State, having filed on more than 200,000 acres. Additional leases in western Oregon, totaling approximately 15,000 acres (see Figure 2), were acquired by independents.

East of the Cascades, Texaco, Inc. and Standard are the largest leaseholders with nearly 180,000 acres each. Independents have rights on another 15,000 acres in eastern Oregon.

Shell Oil Company and Texaco began leasing in three counties of south-central Washington last summer. The leases are located within the Columbia Plateau where Pliocene-Miocene flood basalts cover older rocks. Standard Oil Company of California and others drilled a 10,655-foot test hole in 1958 in the Rattlesnake Hills of that area and bottomed in Oligocene-Eocene volcanics. Interest in the Columbia Basin may later extend to the Oregon portion of the basin if drilling results are encouraging. Gas was produced between 1929 and 1942 from the Rattlesnake Hills structure in the vicinity of Standard’s well and supplied four or five small towns in the area. The gas was found in fractured zones of the Plio-Miocene lavas (Glover, 1936).

Offshore Exploration

Exploration along the Oregon and Washington coasts has been minimal since the last hole was drilled offshore in 1967. Sporadic non-explosive seismic surveys have been conducted in the past 7 years. Digicon, Inc., Houston, Texas, made air-gun studies along the Coast in April 1974. Gulf
Figure 1. Oil and gas shows in wells in Oregon.

Figure 2. Oil and gas lease areas in Oregon, 1974.
Oil Company, U.S., applied in October 1974 to conduct geophysical surveys along the Oregon Coast. Standard and Texaco maintained exploration permits for offshore geophysical work but did not make investigations in 1974.

References

GEOTHERMAL LEASE AREAS IN OREGON

The accompanying map outlines general areas of applications for Federal lands and existing leases on private lands. Geothermal leasing activity covers more than 2 million acres of land in the Cascade Range and volcanic terrain of eastern Oregon. Applicants and lessees by area are:

<table>
<thead>
<tr>
<th>Area</th>
<th>Applicants/Lessees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mount Hood</td>
<td>Republic Geothermal</td>
</tr>
<tr>
<td></td>
<td>Breitenbush Hot Springs</td>
</tr>
<tr>
<td></td>
<td>Hydro Energy</td>
</tr>
<tr>
<td></td>
<td>Sun Oil</td>
</tr>
<tr>
<td></td>
<td>Hook, et al.</td>
</tr>
<tr>
<td>Belknap Hot Springs</td>
<td>Sun Oil</td>
</tr>
<tr>
<td>Sun Oil</td>
<td>Energy Partners</td>
</tr>
<tr>
<td></td>
<td>Chevron</td>
</tr>
<tr>
<td></td>
<td>Hydro Energy</td>
</tr>
<tr>
<td></td>
<td>Pacific Energy</td>
</tr>
<tr>
<td>McCredie Hot Springs</td>
<td>Oil Resources</td>
</tr>
<tr>
<td>Oil Resources</td>
<td>Hydro Energy</td>
</tr>
<tr>
<td>Newberry Crater</td>
<td>California Geothermal</td>
</tr>
<tr>
<td>Newberry Crater</td>
<td>Chevron</td>
</tr>
<tr>
<td>Newberry Crater</td>
<td>Sun Oil</td>
</tr>
<tr>
<td>Newberry Crater</td>
<td>Phillips Steam</td>
</tr>
<tr>
<td>Newberry Crater</td>
<td>Union Oil</td>
</tr>
<tr>
<td>Summer Lake</td>
<td>LVO Corporation</td>
</tr>
<tr>
<td></td>
<td>Chevron</td>
</tr>
<tr>
<td></td>
<td>Earth Power</td>
</tr>
<tr>
<td></td>
<td>Thermal Resources</td>
</tr>
<tr>
<td>Glass Butte</td>
<td>California Geothermal</td>
</tr>
<tr>
<td></td>
<td>Sun Oil</td>
</tr>
<tr>
<td>Klamath Falls</td>
<td>Dowdle Oil</td>
</tr>
<tr>
<td></td>
<td>Gulf Oil</td>
</tr>
<tr>
<td></td>
<td>Hunt Family</td>
</tr>
<tr>
<td></td>
<td>Earth Power</td>
</tr>
<tr>
<td></td>
<td>Creslen Oil</td>
</tr>
<tr>
<td></td>
<td>Natomas</td>
</tr>
<tr>
<td></td>
<td>Geothermal Resources Int'l</td>
</tr>
<tr>
<td>Lakeview-Warner Valley</td>
<td>Gulf Oil</td>
</tr>
<tr>
<td></td>
<td>Chevron</td>
</tr>
<tr>
<td></td>
<td>Mobil</td>
</tr>
<tr>
<td></td>
<td>Phillips Steam</td>
</tr>
<tr>
<td></td>
<td>Union</td>
</tr>
</tbody>
</table>
Lakeview-Warner Valley, cont'd
 Energy Partners
 Hunt Family

La Grande
 Gulf Oil
 Magma Power
 AMAX Exploration

Burns
 LVO Corporation
 Earth Power
 Pacific Energy
 Gulf Oil
 Geothermal Resources Int'l
 Thermal Resources
 Sun Oil

Cow Lakes
 MacColl
 Douglas, et al.

Vale
 Union Oil
 Magma Power
 Republic Geothermal
 LVO Corporation
 Gulf Oil
 Hydro Energy
 Thermo Resources

Alvord Valley
 Anadarko
 California Geothermal
 Chevron
 Getty
 Gulf Oil
 Magma Power
 Mobil
 Thermex
 Republic Geothermal
 Union Oil
 Pacific Energy
GEOTHERMAL ACTIVITY IN 1974

Richard G. Bowen
Consultant in Geothermal

The level of geothermal activity showed significant increases in some categories but decreases in others. Most importantly, the U.S. Department of the Interior started implementing the 1970 Geothermal Steam Act to lease Federal lands for exploration and development. The number of exploratory wells drilled throughout the West has increased, and several pilot studies in the Imperial Valley of California are underway to utilize the high-temperature brines found in that region. At The Geysers, new step-out wells have continued to enlarge the field. Direct use of geothermal energy for heating or process use is increasing worldwide. The realization that fossil fuels are finite and subject to political manipulation has triggered an increased interest in geothermal potential. On the national scene some companies associated with high-energy use, such as producers of aluminum and chemicals, have also entered the geothermal field to assure themselves of a reliable energy source.

Delays in the development of geothermal resources have been numerous and frustrating during the year. The complex leasing procedure set up by the Federal Geothermal Steam Act of 1970 requires much more time and expense than does the leasing of lands for other fuels, such as oil and gas or uranium. The imposition of environmental studies prior to each step—leasing, exploration work, drilling, development, plant construction—has caused many delays and added greatly to the overall expenses. These delays are now being resolved, however, and a few competitive leases have been signed. The Interior Department expects that some non-competitive leases will be granted in 1975. At The Geysers field, the local requirements for extensive environmental studies have caused a two-year holdup on new plant construction within the field.

World-wide, the oil embargo has caused countries to re-evaluate their geothermal potential and accelerate development to reduce the drain of funds to pay for oil. In Italy, a new steam field was discovered at Alfino, 60 miles south of the Larderello field between Florence and Rome. In New Zealand, studies have been started to assess the geothermal potential in areas away from Wairakei, and efforts are also underway to increase heating and process use in several areas. In Japan, new discoveries have been made and a new field, Hachimantai, came into production this year. Exploration and development activities continue in Mexico, El Salvador, Chile, the Philippines, Indonesia, Greece, Turkey, The Azores, Iceland, Martinique, and Canada.
In Oregon and other western states, a flurry of leasing started in January 1974, with a steady follow-up during the rest of the year. By the time the year ended, applications and deposits for over 1.6 million acres in Oregon had been received by the BLM. Similar patterns developed in Washington, with approximately .6 million acres under application; California with 1.6 million; Idaho, 1.1 million; Utah, .8 million; and Nevada, 2.1 million acres. Most of these states have had some additional leasing activity on private and State lands. The accompanying map shows areas where geothermal lease applications have been filed. Applicants are listed below by geographic areas.

Although the level of interest is high, as shown by leases, drilling activity has not kept pace. During the year only one geothermal test was drilled, that by Magma Energy near La Grande. This well, planned as a 5,500-foot test, was abandoned at 2,800 feet after encountering difficult drilling conditions costing more than the funds budgeted for the job. A well drilled near Klamath Falls by the Presbyterian Intercommunity Hospital intersected a flow of 200°F water at 1,500 feet. The successful geothermal heating installation at nearby Oregon Institute of Technology, together with the rising price of natural gas, were the deciding factors in this enterprise. The system will be modified to run the water directly through the existing natural-gas-fired hot water heating system. Based on the 10 years experience at OIT, it appears this method should be successful and over the next few years give a good return on the drilling investment.

If impediments are removed, 1975 should see the beginning of serious geothermal exploration within the State.

* * * * *

BOWEN RESIGNS TO DO CONSULTING WORK

Richard G. Bowen, Economic Geologist with the Oregon Department of Geology and Mineral Industries for the past 15 years, resigned January 1, 1975 to enter private consulting in geothermal resource investigations and development. Bowen is a well-known expert in geothermal realms and for the past 4 years has been in considerable demand at national and international conferences on energy. He has been president of the Geothermal Resources Council and has served as chairman, co-chairman, speaker, and panelist at numerous energy conferences at both local and international levels. His strong belief in the merits of geothermal energy and his enthusiasm for promoting this idea have put Oregon on the map for its geothermal potential.

Bowen expects to be kept busy doing consulting work for private companies and plans to travel in areas of the West where geothermal activity is anticipated. At the present time his office is in his home in Portland.
FIELD-ORIENTED GEOLOGY STUDIES IN OREGON
DURING 1974

John D. Beaulieu
Geologist, Oregon Dept. of Geology and Mineral Industries

During the 1974 field season at least 115 geologic field investigations were conducted in Oregon. The list below includes those of which the Oregon Department of Geology and Mineral Industries is aware. For convenience, the State is divided roughly into six sections, and several investigations of more regional extent are included in a seventh category - Regional.

The Department would appreciate receiving information about studies in progress in the State which are not listed here. The resumés received thus far have been invaluable in completing this list, and the compiler is grateful for this assistance. An annotated list will be issued later in 1975 as a Department open-file report, and availability of copies of that report at cost will be announced in The ORE BIN.

The Department has no information on completion dates of research or reports of other organizations; inquiries should be directed to individual named.

Northwestern Oregon

6. Astoria Formation - petrology, stratigraphy, paleoenvironment: M. D. Cooper, Ph.D. cand., O.S.U.
10. Water resources of coastal Lincoln County: F. J. Frank and A. Laenen, U.S.G.S. Portland in coop. with State Engineer
11. Western Cascades from Clackamas River to Santiam Pass: Paul Hammond, Dept. of Geology and Mineral Industries (DOGAMI)
15. Ground water of northern Clackamas County: A. R. Leonard, U.S.G.S. Portland, in coop. with State Engineers
16. Oil and gas prospects and underground storage: Vernon C. Newton, Jr., DOGAMI
17. Astoria and Yaquina Formations deltaic-turbidite model: A. R. Niem, Prof., O.S.U.
18. Geomorphology of northern and central Coast Range: W. Niem, Master's cand., O.S.U.
19. Saddle and Humbug Mountains area - geology: Peter Penoyer, Master's cand., O.S.U.
23. Seaside to Young River Falls - geology: Pat Tolson, Master's cand., O.S.U.
25. Battle Ax-Outerson-Triangulation Peaks area - geology: Craig White, Ph.D. cand., U. of O.

Southwestern Oregon

2. Marial and Agness quadrangles - geology: Ewart M. Baldwin, Prof., U. of O.
3. Eocene stratigraphy of southwest Oregon: Ewart M. Baldwin, Prof., U. of O.
4. Environmental geology of western Coos County: John D. Beaulieu, DOGAMI, and Paul W. Hughes, consultant
7. Ashland pluton - geology: Mary Donato, Master's cand., U. of O.
15. Compilation map in Wrangle Camp-Dutchman Peak area: M. A. Kays and S. Boggs, Profs., U. of O.
17. Eocene stratigraphy northwest of Roseburg: E. R. Orwig, Mobil Oil
24. Gravel resources of Josephine County: Herbert Schlicker, DOGAMI
26. Galice, Dothan, and Josephine units: Scott Vail, Ph.D. cand., O.S.U.

North-central Oregon

1. Devonian of Oregon: Tom Amundson, senior res., P.S.U.
2. Canyon Mountain Complex: Hans Ave Lallement, Prof., Rice U.
3. Columbia River Basalt stratigraphy: Robert Bentley, Prof., C.W.S.C.
4. Landslides, community of John Day: Howard Brooks and Herbert Schlicker, DOGAMI
7. Rattlesnake Formation - type section: H. E. Enlows, Prof., O.S.U.
11. Plio-Pleistocene volcanics of the Portland area and Columbia River Gorge – chemical analyses: Gary L. Millhollen, Prof., Purdue U.
14. Mineral resources of Deschutes County: Norm Peterson, DOGAMI, and Ed Groh, consultant
15. Water resources of the Warm Springs Indian Reservation: J. H. Robison, U.S.G.S. Portland in Coop. with State Engineer
16. Jurassic paleontology of the Izee area: Paul Smith, grad. student, PSU

South-central Oregon

Northeastern Oregon

1. Clover Creek Greenstone – stratigraphy: D. A. Bostwick, Prof., O.S.U.
2. Burnt River Schist – paleontology: D. A. Bostwick, Prof., O.S.U.
4. "Little Dog Creek Limestone:" - micropaleontology: D. A. Bostwick, Prof., O.S.U.
5. Baker AMS sheet - geology: Howard Brooks, DOGAM.
6. Huntington quadrangle - geology: Howard Brooks, DOGAM.
12. Water resources of the Umatilla Indian Reservation, Umatilla County: J. B. Gonthier, U.S.G.S. Portland, in coop. with State Engineer
18. Columbia River Basalt - regional study of small scale structures: William H. Taubeneck, Prof., O.S.U.
19. Pre-Tertiary geology of Pilot Rock area: W. C. Trauba, Master's cand., O.S.U.
20. Pre-Tertiary flow rock - sampling: Tracy Vallier, Prof., Indiana State Univ., researcher, Scripps

Southeastern Oregon

1. Welded tuff near McDermitt: R. C. Greene, U.S.G.S. Menlo Park
2. Geothermal reconnaissance: Norm S. MacLeod, U.S.G.S. Menlo Park

Regional Studies

4. Geothermal temperature gradients and hot springs: Donald Hull, DOGAMI
5. Copper deposits inventory: Donald Hull, DOGAMI
6. Volcanic chronology: A. McBirney, Prof., U. of O., and John Sutter, Prof., Ohio S.U.
7. Fossil vertebrates from the Clarendonian and Hemphillian: James E. Martin, Master's cand., U. of W.

* * * * *

SNAKE RIVER CANYON MAP PUBLISHED

A geologic map of the Snake River Canyon, Oregon-Idaho, together with a preliminary report describing the geology, has been published as GMS-6 in the Department's Geologic Map Series. Map and report were prepared by Tracy L. Vallier, formerly at Indiana State University and now with Scripps Institution of Oceanography in California. Dr. Vallier began his field work as a graduate student at Oregon State University and spent eight summers studying and mapping the complex geology of this rugged canyon of the Snake River. The area mapped extends from the Oxbow, south of Homestead, to the Oregon-Washington boundary.

The Snake River Canyon map, at a scale of 1:125,000, and the 15-page descriptive report are for sale by the Oregon Department of Geology and Mineral Industries at its Portland, Baker, and Grants Pass offices. The price is $5.00.

* * * * *

SUBSCRIPTION RENEWAL

If your subscription has expired
RENEW NOW FOR 1975!
Expiration date on back of October issue
AVAILABLE PUBLICATIONS

(Bullets are final - no returns. Upon request, a complete list of Department publications, including out-of-print, will be mailed)

BULLETINS
1. Feasibility of steel plant in lower Columbia River area, rev. 1940: Miller 0.40
2. Soil: its origin, destruction, preservation, 1944: Trencher 0.45
33. Bibliography (1st suppl.) geology and mineral resources of Oregon, 1947: Allen 1.00
35. Geology of Dallas and Valsetz quadrangles, Oregon, rev. 1963: Baldwin 3.00
36. Papers on Tertiary fossiliferous Cushen, Stewart & Stewart, vol. 1 $1.00; vol. 2 1.25
39. Geology and mineralization of Morning mine region, 1948: Allen and Thayer 1.00
46. Ferruginous breccia deposits, Salem Hills, 1956: Carcaron and Libby 1.25
49. Lode mines, Granite mining district, Grant County, Oregon, 1959: Koch 1.00
52. Chromite in southwestern Oregon, 1961: Ramp 3.00
57. Lunar Geological Field Conf. guidebook, 1965: Peterson and Oishi, editors 3.50
60. Engineering geology of Tuolumne Valley region, 1967: Schlicker and Deacon 3.00
61. Gold and silver in Oregon, 1965: Brooks and Ramp 3.00
64. Geology, mineral, and water resources of Oregon, 1969 1.50
67. Bibliography (4th suppl.) geology and mineral industries, 1970: Roberts 2.00
69. Geology of the Southwestern Oregon Coast, 1971: Dott 3.75
70. Geologic formations of Western Oregon, 1971: Beaullieu 2.00
71. Geology of selected lava tubes in the Bend area, 1971: Greasley 2.50
72. Geology of Mitchell Quadrangle, Wheeler County, 1972: Ota and Entwau 3.00
73. Geologic formations of Eastern Oregon, 1972: Beaullieu 2.00
74. Geology, mineral resources of Douglas County, 1972: Ramp 3.00
77. Geologic field trips in northern Oregon and southern Washington, 1973 5.00
78. Bibliography (5th suppl.) geology and mineral industries, 1973: Roberts and others 3.00
79. Environmental geology inland Tillamook Clatsop Counties, 1973: Beaullieu 6.00
79. Geology and mineral resources of Coos County, 1973: Baldwin and others 5.00
81. Environmental geology of Lincoln County, 1973: Schlicker and others 7.50
92. Geol. hazards of Bull Run Watershed, Mult. Clackamas Co., 1974: Beaullieu 5.00
93. Eocene stratigraphy of southwestern Oregon, 1974: Baldwin 3.50
94. Environmental geology of western Lane Co., 1974: Beaullieu and others 8.00
95. Environmental geology of coastal Lane Co., 1974: Schlicker and others 7.50
96. Nineteenth Biennial Report of the Department, 1972-1974 1.00

GEOLOGIC MAPS
Geologic map of Oregon west of 121st meridian, 1961: Wells and Peck 2.15
Geologic map of Oregon (12° x 9°), 1969: Walker and King 0.25
Geologic map of Albany quadrangle, Oregon, 1953: Allison (also in Bulletin 37) 0.50
Geologic map of Galice quadrangle, Oregon, 1953: Wells and Walker 1.00
Geologic map of Lebanon quadrangle, Oregon, 1956: Allison and Feltis 0.75
Geologic map of Bend quadrangle, and portion of High Cascade Mtns., 1957: Williams 1.00
GMS-1: Geologic map of the Sprague quadrangle, Oregon, 1962: Prostlus 1.50
GMS-2: Geologic map, Mitchell Butte quadr., Oregon, 1969: Carcaron and others 1.50
GMS-3: Preliminary geologic map, Durkee quadrangle, Oregon, 1967: Prostlus 1.50
GMS-4: Gravity maps of Oregon, onshore & offshore, 1967: Berg and others 1.50
GMS-5: Gravity maps of Oregon, onshore & offshore, 1967: Berg and others (folded in envelope) 2.25
GMS-6: Preliminary report, geology of part of Snake River Canyon, 1974: Valliet 5.00

[Continued on back cover]
Available Publications, Continued:

<table>
<thead>
<tr>
<th>SHORT PAPERS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Radioactive minerals prospectors should know, 1955: White and Schaefer</td>
<td>.50.30</td>
</tr>
<tr>
<td>21. Lightweight aggregate industry in Oregon, 1951: Mason</td>
<td>.02.25</td>
</tr>
<tr>
<td>24. The Almeda mine, Josephine County, Oregon, 1967: Libbey</td>
<td>.20.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS PAPERS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Description of some Oregon rocks and minerals, 1950: Cole</td>
<td>.04.40</td>
</tr>
<tr>
<td>2. Oregon mineral deposits map (22 x 34 inches) and key (reprinted 1973): Mason</td>
<td>.07.50</td>
</tr>
<tr>
<td>4. Rules and regulations for conservation of oil and natural gas (rev. 1962)</td>
<td>.1.00</td>
</tr>
<tr>
<td>5. Oregon's gold placers (reprints), 1954</td>
<td>.02.25</td>
</tr>
<tr>
<td>6. Oil and gas exploration in Oregon, rev. 1965: Stewart and Newton</td>
<td>.1.50</td>
</tr>
<tr>
<td>7. Bibliography of theses on Oregon geology, 1959: Schlicker</td>
<td>.05.00</td>
</tr>
<tr>
<td>8. Available well records of oil and gas exploration in Oregon, rev. 1963: Newton</td>
<td>.05.50</td>
</tr>
<tr>
<td>11. A collection of articles on meteorites, 1968 (reprints from The ORE BIN)</td>
<td>.1.00</td>
</tr>
<tr>
<td>12. Index to published geologic mapping in Oregon, 1968: Corcoran</td>
<td>.02.25</td>
</tr>
<tr>
<td>13. Index to The ORE BIN, 1950-1969, 1970: Lewis</td>
<td>.03.00</td>
</tr>
<tr>
<td>14. Thermal springs and wells, 1970: Bowen and Peterson</td>
<td>.1.00</td>
</tr>
<tr>
<td>15. Quicksilver deposits in Oregon, 1971: Brooks</td>
<td>.1.00</td>
</tr>
<tr>
<td>16. Mosaic of Oregon from ERTS-1 imagery, 1973:</td>
<td>.2.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OIL AND GAS INVESTIGATIONS SERIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Petroleum geology, western Snake River basin, 1963: Newton and Corcoran</td>
<td>.25.50</td>
</tr>
<tr>
<td>2. Subsurface geology, lower Columbia and Willamette basins, 1969: Newton</td>
<td>.25.50</td>
</tr>
<tr>
<td>3. Prelim. identifications of foraminifera, General Petroleum Long Bell no. 1 well</td>
<td>.1.00</td>
</tr>
<tr>
<td>4. Prelim. identifications of foraminifera, E. M. Warren Coos Co. 1-7 well: Rau</td>
<td>.1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS PUBLICATIONS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Landforms of Oregon: a physiographic sketch (17" x 22"), 1941</td>
<td>.02.25</td>
</tr>
<tr>
<td>Geologic time chart for Oregon, 1961</td>
<td>free</td>
</tr>
<tr>
<td>Postcard - geology of Oregon, in color</td>
<td>.10¢ each; 3 - 25¢; 7 - 50¢; 15 - 1.00</td>
</tr>
<tr>
<td>Oregon base map (22 x 30 inches)</td>
<td>.02.50</td>
</tr>
<tr>
<td>Mining claims (State laws governing quartz and placer claims)</td>
<td>.05.00</td>
</tr>
<tr>
<td>The ORE BIN - Annual subscription</td>
<td>($5.00 for 3 yrs.) .20.00</td>
</tr>
<tr>
<td>Available back issues, each</td>
<td>.02.25</td>
</tr>
<tr>
<td>Accumulated index - see Misc. Paper 13</td>
<td></td>
</tr>
</tbody>
</table>