OREGON GEOLOGY
(ISSN 0164-3304)
Volume 41, Number 5 May 1979

Published monthly by the State of Oregon Department of Geology and Mineral Industries (Volumes 1 through 40 were entitled The Ore Bin).

Governing Board
Leeanne G. MacColl, Chairperson Portland
Robert W. Doty Talent
John L. Schwabe Portland

State Geologist Donald A. Hull
Deputy State Geologist John D. Beaulieu
Editor .. Beverly F. Vogt

Main Office: 1069 State Office Building, Portland 97201, phone (503) 229-5580.
Baker Field Office: 2033 First Street, Baker 97814, phone (503) 523-3133.
Howard C. Brooks, Resident Geologist

Len Ramp, Resident Geologist

Mined Land Reclamation Division: 1129 S.E. Santiam Road, Albany 97321, phone (503) 967-2039.
Stanley L. Ausmus, Administrator

Subscription rates: 1 year, $4.00; 3 years, $10.00. Single issues, $.40 at counter, $.50 mailed.
Available back issues of The Ore Bin: $.25 at counter, $.50 mailed.

Address subscription orders, renewals, and changes of address to Oregon Geology, 1069 State Office Building, Portland, OR 97201.

Send news, notices, meeting announcements, articles for publication, and editorial correspondence to the editor, Portland office. The Department encourages author-initiated peer review for technical articles prior to submission. Any review should be noted in the acknowledgments.

Second class postage paid at Portland, Oregon.
Postmaster: Send address changes to Oregon Geology, 1069 State Office Building, Portland, OR 97201.

COVER PHOTO
Aerial view of Hells Canyon of Snake River, looking upriver to south near Hat Point. Saddle Creek is in right middle ground. Rocks are primarily pre-Tertiary volcanic and volcanioclastic rocks of Wallowa-Seven Devils volcanic arc terrane (see article beginning p. 71). (U.S. Forest Service photo)

NOTICE TO CONTRIBUTORS
OREGON GEOLOGY readers are invited to submit articles about Oregon geology, such as field trip guides, descriptions of geology of state parks, results of student or faculty research, and information on interesting mineralogical or paleontological finds. Both technical and general interest articles will be published. Authors of technical articles are urged to obtain peer review prior to submittal, and such reviewers should be acknowledged in the article.

1. All material should be typewritten, double-spaced, with one-in. margins.
2. In general, articles, including tables, artwork, and photos should not exceed 20 pages in length. Longer articles might be published in two installments.
3. Drafted material must be submitted in final form. If reduction will be necessary, lettering should be large enough to be legible after reduction.
4. Photos should be black-and-white glossy prints. If slides or color prints are the only photos available, consult with the editor.
5. All artwork and photos must be clearly marked. Figure references should be placed in appropriate places in the text. A separate typed list of figure captions should accompany the article. All artwork and photos become the property of the Department, unless other arrangements are made prior to publication.
6. Consult U.S. Geological Survey Suggestions to Authors (6th ed.) for questions of style. Authors are responsible for accuracy and completeness of citations.
7. Except for units of measurement, do not abbreviate.
8. Authors (or first author in the case of multiple authorship) will receive 25 complimentary copies of the issue of OREGON GEOLOGY in which their article appears.

TO OUR READERS
Readers will note that this month’s issue of Oregon Geology has been typeset. We are trying typesetting because we believe it will increase our efficiency, improve readability, and enable us to get much more information onto each page. We invite your comments on this new step.

CONTENTS
Plate tectonics and the geologic history of the Blue Mountains 71
Abstracts 81
Meeting announcements 82
Plate Tectonics and the Geologic History of the Blue Mountains

by H.C. Brooks, Resident Geologist, Baker Field Office, Oregon Department of Geology and Mineral Industries

INTRODUCTION

Rocks which make up the Blue Mountains of northeastern Oregon and adjacent western Idaho are divided into two main groups on the basis of their geologic ages and origins. The older of the two groups ranges from Devonian to Late Jurassic in age and is made up chiefly of rocks which at one time were part of an ancestral Pacific Ocean. According to plate tectonic theory, these rocks represent fragments of ancient ocean floor and volcanic islands that were broken up, moved across some unknown breadth of ocean, and added onto what was then the outer edge of the continent. This accretionary expansion of the continent took place between Late Triassic and Late Jurassic time.

The younger group of rocks is of Cenozoic age and consists of sedimentary and volcanic rocks that were deposited on dry land or in freshwater lakes on top of the older rocks after they had become part of the continent. Erosion has removed the Cenozoic rocks in many places, exposing pre-Cenozoic rocks.

In this report only the pre-Cenozoic rocks are discussed. Preceding the discussion is an outline of some basic concepts of plate tectonics for those readers who are not familiar with the subject. The interested reader is encouraged to consult recent geologic textbooks for more thorough discussions of the theory.

This discussion of plate tectonics and the Blue Mountains is largely a synthesis of information presented in recent publications by Brooks and others (1976), Vallier and others (1977), Thayer (1977), Vallier (1977), Brooks and Vallier (1978), Dickinson and Thayer (1978), Hamilton (1976; 1978a, b), and Dickinson (1979).

PLATE TECTONIC THEORY

The basic tenet of the theory of plate tectonics is that the outer rind of the earth is divided into giant plates that are in motion relative to one another (Figure 1). The plates are rigid and float on a relatively plastic and deformable substratum. They are about 80 km thick and comprise the outermost layer of the earth (the crust) and the upper part of the underlying layer (the mantle).

This rigid outer portion of the earth is called the lithosphere. The plastic layer on which the lithospheric plates move is lower in the mantle and is called the asthenosphere.

All of the lithospheric plates are moving more or less continuously—pulling apart, pushing together, slipping past or sliding under one another like ice floes in a river. They are constantly changing in size and shape. Zones with frequent earthquakes outline the boundaries of the plates. Motion of the plates results in relative displacements between adjacent plates ranging from less than 1 to about 13 cm per year. The velocities are unimpressive until one realizes that 5 cm per year amounts to 50 km per million years, and some plate movements have been under way for at least 100 million years.

Where plates are moving away from one another, hot plastic material (magma) from the mantle flows upward to fill the fissures which open between them and solidifies to become part of the trailing edges of the separating plates (Figure 2). New crust is thereby created. Because most of the rift zones where plate material is being created are in the middle of the ocean floor, this process is called sea-floor spreading. Presently, the plates are separating and gaining new material primarily along a system of submarine ridges more than 64,000 km in total length that branches through all the world’s oceans like the seam of a baseball. A ridge forms between the separating plates because the new material is hot, lower in density, and rides relatively high on the asthenosphere. As the plates move apart, the material cools, becomes higher in density, and rides lower on the asthenosphere.

Where the plates converge, one is deflected downward so that it slides beneath the leading edge of the other and then is carried back into the earth, where it is recycled. Old crust is thereby destroyed. Overall plate consumption must progress at the same rate as plate growth. Generally, oceanic plates slide beneath continental plates or other oceanic plates.

As the oceanic plates move about, they accumulate an overlayer of sediments consisting partly of material eroded from continents and islands and partly of the remains of oceanic micro-organisms. When the cooled oceanic plate with its overlying layer of sediment is carried down into the hotter mantle at subduction zones, selective melting of the lighter materials, including the sediment, occurs.

Part of the melted material rises and reaches the surface of the overriding plate, producing a zone of volcanic activity called a volcanic arc; part of it crystallizes before reaching the surface, either in the roots of the volcanoes or in the crust beneath them (Figure 2).

Large intrusive bodies of rock that crystallize underground from a melt are called plutons; large plutons (over 100 sq km in area) are called batholiths, and smaller ones are called stocks. Sheetlike intrusive igneous rocks that cut across the planar structure of surrounding rocks are called dikes; those that parallel the structure are called sills.

As the oceanic crust descends beneath the volcanic arc, it provides a replenishable source of magma so that the volcanic (extrusive) and plutonic (intrusive) buildup...
of the arc may continue for many millions of years. Volcanic arcs may form on the floors of ocean basins or along continental margins, depending on the locations of the subduction zones. Offshore volcanic arcs often appear as strings of volcanic islands known as island arcs. The Pacific Ocean is ringed with island arcs. The Aleutian Islands and the Japanese Islands are prime examples. The Andes Mountains of South America and the Cascade Mountains of Oregon and Washington are examples of volcanic arcs that are built on continental margins.

Subduction zones are marked by trenches, great linear depressions in the ocean floor. Trenches are repositories for accumulations of sediment derived mainly from overriding plates. Sediment deposited on a trench floor is carried beneath the margin of the overriding plate by the descending plate unless the rate of sediment accumulation exceeds the rate of subduction, in which case part of the sediment piles up against the wall of the trench.

The parts of a growing volcanic arc which rise above sea level are subjected to erosion; as a result, volcanic and sedimentary rocks are mixed and interlayered. Some sediment is carried toward the ocean and deposited in the area between arc and trench. This area is known as the arc-trench gap or forearc basin. Also, some sediment is carried toward the continent and deposited between the arc and the continent.

The continents and ocean basins are distinctly different parts of the plates and are affected differently during plate movements. Nearly all plates consist of both continental and oceanic portions that move together as a unit. Because it is made of lighter material, continental crust is much thicker than oceanic crust, and for the same reason, continents stand higher than ocean basins. Oceanic crust is generally about 5 km thick. Average thickness of continental crust is about 35 km; thickness under mountain ranges may be as much as 60 km.

Sooner or later, all ocean floors will be replaced as new crust is created at spreading ridges and old crust is consumed in subduction zones. The most ancient segment of the present ocean floor anywhere in the world is less than 200 million years old, whereas some parts of the continents are more than 4 billion years old. Presumably, continental crust is too buoyant to be resorbed into the mantle at subduction zones.

Continents may split and the pieces may drift apart as new oceanic crust is formed between them. Continents on opposite sides of a spreading ridge move farther apart as new oceanic crust is created at the spreading ridge. Continents on opposite sides of a subduction zone move closer together as old oceanic crust is consumed in the subduction zone. Where oceanic crust disappears between them, continents are slowly jammed together with such deforming force that mountains are formed. The Himalayan and Alpine Mountains are examples of mountains formed by colliding continents. In the same manner, island arcs collide with continents and become part of mountain belts along the margins of continents. Continents may grow by the magmatic con-

struction of volcanic arcs along their margins and by the accretion of volcanic arcs which were constructed on the ocean floor. There are no ancient arcs in the present oceans, just as there are no really ancient ocean floors. All old island arcs have presumably become parts of the continents.

Associated with arc volcanic and related rocks in many mountain belts are suites of rocks called ophiolites, generally regarded as remnants of oceanic crust and upper mantle which were not totally consumed at subduction zones. Major components of intact ophiolite successions are, from bottom to top, peridotite, gabbr, basalt, and oceanic sediments. Many ophiolite successions also include quartz diorite and albite granite (plagiogranite) in the upper part of the intrusive complex and keratophyre and quartz keratophyre lava and tuff in the extrusive sequence. Most ophiolite sequences are capped by fine-grained sedimentary rocks, usually including chert and argillite which were deposited in layers on top of the oceanic crust as it moved away from the spreading ridge.

The mountainous region of the western United States west of the Rocky Mountains is known as the Cordilleran Orogen. The Cordillera is divided into two belts which roughly parallel the present Pacific continental margin. The eastern belt consists mainly of marine sedimentary rocks derived from erosion of continental rocks and deposited on the continental margin. The western belt is made up mainly of fragments of oceanic crust and volcanic arcs and their associated sedimentary terranes that were swept against the continent on moving oceanic lithosphere. The approximate location of the continental margin at different times during the Mesozoic is shown in Figure 3.

Pre-Cenozoic rocks in the Blue Mountains are among the easternmost exposures of the western belt of accreted terranes. Oceanic crust (ophiolite) and volcanic island arc terranes of the Blue Mountains region were accreted to the continent during the Late Triassic to Early Cretaceous interval of geologic time. The contact between these rocks and rocks of the eastern, non-volcanic portion of the Cordillera is obscured by the Idaho Batholith, of Late Cretaceous and younger age.

PLATE TECTONIC TERRANES IN THE BLUE MOUNTAINS

Pre-Cretaceous rocks in the Blue Mountains are divided into four terranes: oceanic crust terrane, Wallowa-Seven Devils volcanic arc terrane, Huntington volcanic arc terrane, and forearc basin terrane. The rocks in all terranes are metamorphosed to varying degrees and intruded locally by late Mesozoic granitic plutons. Devonian through Jurassic rocks are present, but rocks ranging from Permian through Jurassic age are most abundant.

Oceanic crust terrane

The oceanic crust terrane represents oceanic crust and its overlying (supracrustal) cover, consisting of sedimen-
Figure 1. Lithosphere plates of the world, showing presently active boundaries. Double line: zone of spreading, where plates are moving apart. Line with barbs: zone of underthrusting (subduction), where one plate is sliding beneath another; barbs on overriding plate. Single line: strike-slip fault, along which plates are sliding past one another. Stippled area: part of a continent, exclusive of that along a plate boundary, which is undergoing active extensional, compressional, or strike-slip faulting. Compiled and adapted from many sources; much simplified in complex areas. (From Hamilton, 1978. Map courtesy California Division of Mines and Geology)

tary and volcanic rocks. Both crust and cover were severely broken up, rearranged, and deformed before and during late Mesozoic time, when the terrane became attached to the western edge of North America. Fragments of ophiolite successions are scattered throughout the terrane.

Included in the ophiolite fragments are ultramafic rocks, gabbro, quartz diorite, and albite granite in various proportions in different places. The supracrustal sedimentary and volcanic rocks are mainly chert, argillite, tuff, and lava flows, with scattered pods and lenses of limestone. Tectonic blocks of limestone and chert have yielded fossils ranging from Devonian to Middle Triassic age. Therefore, the oceanic crust terrane probably does not represent a single piece of ocean floor that has been broken up. More likely it represents a collage of pieces of several different generations of crust, broken and deformed both before and while they were being assembled by plate tectonic forces, probably near a subduction zone. Most of the rocks are severely deformed by folding and faulting. Major rock types typically are separated by faults or shear zones rather than depositional or intrusive contacts. The term “mélange” is often used to describe the chaotic mixture of rock types.

The largest intact exposure of the ophiolitic rocks is centered in Canyon Mountain, southeast of John Day (Figure 4), and is known as the Canyon Mountain Complex (Thayer, 1963). The rocks of this complex and their stratigraphic and structural relationships have been discussed in considerable detail (Thayer, 1963, 1977; Thayer and Brown, 1964; Avé Lallemant, 1976). The complex is 17 to 20 km long by 8 to 13 km wide and is about 150 km² in area. A block of serpentinitized peridotite and gabbro that has been intensely deformed at high temperature forms 80 percent of the complex, and a sheeted dike complex makes up the remaining 20 percent. The complex is divided into three east-west belts with ultramafic rocks on the north, gabbro in the middle, and the sheeted dike complex of quartz diorite, albite granite, and keratophyre on the south. The sheeted dike complex was intruded into the peridotite and gabbro of the Canyon Mountain Complex and is believed to constitute the substructure of volcanoes that formed on the ocean floor in Permian and early Mesozoic time. Ages obtained from radioactive isotope dating of the Canyon Mountain Complex and associated metamorphic rocks nearby range from 250 to 186 million years.

Other large exposures of ophiolitic rocks occur in the Virtue Hills and Sparta areas east of Baker. East of Elkhorn Ridge, the rocks are mostly gabbro, quartz diorite, and albite granite. Ultramafic rocks make up a very small percentage of the total outcrop area.

The mix of rock types in the supracrustal assemblage
Figure 2. Schematic models of separating and converging plates of oceanic lithosphere.

Figure 3. Map showing locations of continental margin at different times during the Mesozoic.

Figure 4. (opposite page) Geologic map showing areal distribution of pre-Cenozoic oceanic crust, volcanic arc and forearc basin terranes, and late Mesozoic plutons in Blue Mountains. Lines A-A' and B-B' show approximate locations of cross sections in Figure 5.

Figure 5. Schematic cross sections illustrating the inferred relationships between the terranes in Figure 4. See Figure 4 for location of lines A-A' and B-B'. Cenozoic cover and Mesozoic plutons are not shown.
The relationship between the Huntington arc terrane and the Wallowa-Seven Devils volcanic arc terrane is not clear. The contact between the two is buried beneath Cenozoic lavas south of the Seven Devils Mountains. They may be parts of the same volcanic arc or parts of different, possibly widely separated, arcs brought close together by plate movements.

Forearc basin terrane

The forearc basin terrane is represented by a great thickness of mainly clastic strata between the dismembered oceanic crust terrane and the Huntington arc terrane. Rocks of the forearc basin conceal the contact between the oceanic and arc terranes (Figure 5). Deposition occurred in Late Triassic to Late Jurassic time. The strata have an aggregate thickness of 15,000 m. Dominant rock types are sandstone, siltstone, shale, and tuff, with subordinate lava flows and scattered limestone and conglomerate beds. Most of the clastic rocks are made up largely of detritus eroded from volcanic rocks; some consist mainly of chert grains, and some consist of water-laid tuff.

In the Snake River area, Lower Jurassic beds of the forearc basin terrane rest unconformably on the Upper Triassic volcanic rocks of the Huntington arc terrane and are in contact with rocks of the dismembered oceanic crust terrane along the Connor Creek fault. These rocks comprise the "flysch terrane" of Brooks and Vallier (1978) and the "Jurassic flysch" of Figure 6. The term "flysch" is used in its broad sense, to mean an extensive sedimentary formation derived by rapid erosion of an adjacent rising land mass.

A conglomeratic unit at the base of the flysch is made up largely of rounded fragments of volcanic rocks eroded from emergent parts of the Huntington arc ter-

OREGON GEOLOGY, VOL. 41, NO. 5, MAY 1979
Conclusions

The oceanic crust and island arc terranes exposed in the Blue Mountains were accreted to the continent between Late Triassic and Middle Cretaceous times. Present indications are that both volcanic arc terranes are of intra-oceanic origin and therefore could not have been accreted to the continent until after the youngest associated rocks were deposited. The youngest dated rocks in the Blue Mountains are of Late Triassic (Norian) age. The youngest rocks in the Wallowa-Seven Devils arc terrane are clastic strata of Early Jurassic (Pliensbachian) age.

Mid-Cretaceous sedimentary rocks in the western part of the province contain erosional debris from the oceanic crust and forearc basin assemblages and from Mesozoic plutons and are therefore believed to have been deposited after the older terranes became attached to the continent. Clearly all the pre-Cenozoic terranes had been deeply eroded prior to the deposition of the oldest continental volcanic and sedimentary rocks in early Tertiary time.

The pre-Cenozoic rock assemblages in the Blue Mountains represent small parts of a very large plate tectonics jigsaw puzzle that can never be entirely reconstructed because some of the pieces are missing or are obscured by younger rocks and tectonic events. Some of the major questions remaining to be answered involve the identification of the substructure of the arc terranes, determination of the structural relationships between the oceanic crust and island arc terranes, and resolution of the problem of whether the two arc terranes are parts of the same arc or juxtaposed fragments of different arcs.

BIBLIOGRAPHY

——— 1978a, Plate tectonics—its influence on man: California Division of Mines and Geology, California Geology, v. 31, no. 10.

Smith, W.D., and Allen, J.E., 1941, Geology and physiography of the northern Wallowa Mountains, Oregon: Oregon Department of Geology and Mineral Industries Bulletin 12, 64 p.

AMENDED OIL AND GAS RULES

Amended Oil and Gas rules are in the process of being printed at the Secretary of State's office but will not be available for at least several weeks. Therefore the Oregon Department of Geology and Mineral Industries has had the amended rules printed and is circulating them so they may be referred to in the interim. These amendments are available from the Department's Portland office for $0.75 to cover the cost of handling and mailing.

The amendments, plus the existing rules, comprise a complete set of oil and gas regulations.
ABSTRACTS

The Department maintains a collection of theses and dissertations on Oregon geology. From time to time we will print abstracts of new acquisitions that we feel are of general interest to our readers.

STRATIGRAPHY AND PETROGRAPHY OF THE SELAH MEMBER OF THE ELLENSBERG FORMATION IN SOUTH-CENTRAL WASHINGTON AND NORTH-CENTRAL OREGON, by Mavis Hensley Kent (M.S. in Geology, Portland State University, 1978)

The Selah Member of the Ellensburg Formation is a sedimentary interbed within lava flows of Yakima Basalt and occurs in south-central Washington and north-central Oregon. The Selah Member is overlain by the Pomona Member of the Saddle Mountains Basalt and underlain by the Priest Rapids Member of the Wanapum Basalt. The Selah Member has been studied in detail within the southwestern portion of the Columbia Plateau, in the Roosevelt-Arlington basin, an east-west trending structure which parallels the axis of the Dalles-Umatilla syncline. The Roosevelt-Arlington basin is bounded by the Horse Heaven Hills anticline to the north, and the Willow Creek monocline to the south.

Within the Roosevelt-Arlington basin the Selah Member is divided into three lithologic and petrographic units. The lowermost unit, I, consists of air-fall tuff, accretionary lapilli tuff, pumiceite, and minor volcanic litharenite and siltstone. The middle unit, II, is subdivided into: (1) a northern part consisting primarily of volcanic litharenite, feldspathic volcanic litharenite and basaltic conglomerate, which is referred to as the tectonic facies; and (2) a southern part consisting primarily of claystone and siltstone, referred to as the lacustrine facies. The uppermost unit, III, consists of water-lain siltstone, volcanic litharenite, vitric (volcanic) litharenite, and minor pumiceite and accretionary lapilli tuff.

The light mineral assemblage (<sp gr 2.96) in the Selah member consists of altered vitric (devitrified ash) rock fragments (up to 99.8 percent by volume), sanidine feldspar, glass, plagioclase feldspar, and quartz, and indicates abundant primary volcanic air-fall sources. The heavy mineral assemblage (>sp gr 2.96) consists of opaque, hypersthene, hornblende, basaltic hornblende, clinozoisite, epidote, topaz, and zircon, and also indicates a primary volcanic source. Plutonic/metamorphic minerals comprise less than 5 percent of the heavy mineral assemblage, and commonly less than 0.5 percent of the total mineral volume.

Explosive volcanic activity during Selah time, probably in the Cascade Range to the west, was a major source of the tephra that were deposited in streams and shallow lakes within the Roosevelt-Arlington basin. Penecontemporaneous deformation during Selah-time, probably associated with the major structural features bounding the Roosevelt-Arlington basin, is suggested by the presence of basaltic conglomerates and an erosional unconformity at the base of unit II-tectonic facies. The absence of the ancient Columbia River in the Roosevelt-Arlington basin during deposition of the Selah Member is indicated by the structural and/or topographic isolation of the Roosevelt-Arlington basin, the lack of quartztic gravels, and the low volume of plutonic/metamorphic sediments. It is suggested that the Columbia River occupied a northerly course during deposition of the Selah Member.

THE STRATIGRAPHY AND STRUCTURE OF THE COLUMBIA RIVER BASALT IN THE CLACKAMAS RIVER BASIN, by James Lee Anderson (M.S. in Geology, Portland State University, 1978)

The Clackamas River drainage within the western Cascade Range is approximately aligned with a northwest trending lineation defined by the Portland Hills and the Brothers Fault zone. This area is occupied by an extensive Columbia River Basalt sequence that is deeply incised by the Clackamas River and its tributaries. Two major basalt units of the Yakima Basalt Subgroup, including the Grande Ronde Basalt and the Frenchman Springs Member of the Wanapum Basalt, are distinguishable in a 515 m to 550 m accumulation. Of particular interest is the presence of five distinct geochemical and paleomagnetic subunits within the Grande Ronde Basalt. These include, from oldest to youngest, the paleomagnetically normal (N) low MgO, reversed (R) low MgO, reversed (R) Prineville, normal (N) low MgO, and normal (N) high MgO geochemical types. Interbeds having wide lateral extent and ranging in thickness from 3 to 35 m are numerous, indicating close proximity to a degrading highland. Composition of these units indicates contemporaneous Cascadian volcanism.

The structural grain of the area is primarily northwest with lesser northeast and north-south components. A general northwest dip of less than 10° predominates and reflects Cascadian uplift. Northwest faults cut the shallowly dipping Columbia River Basalt sequence in an en echelon pattern that is distributed across the entire area. Sense and magnitude of movement on all faults are highly varied. Both strike-slip and dip-slip faulting have been recognized, with the throw on normal faults commonly ranging between 100 and 200 m. Graben structures are defined by faults in both the Fish Creek Airstrip and Roaring River areas. The basalt is most deformed along the northeast margin of the area where dips of 10° to 35° occur. An anticlinal fold is indicated by attitudes in the Roaring River area. Folding over the rest of the Clackamas River study area is of a very broad nature. Vertical fault planes, orientation of structures, and the presence of northwest trending right-lateral strike-slip faults are consistent with a stress model of north-south compression and east-west extension.
Each month, space permitting, upcoming meetings will be announced in this column. Information should reach this office no later than six weeks before a meeting. Please be specific and give full name of the organization; exact subject, location, and time of the meeting; and the name, address, and phone number of person to contact for questions or reservations.

NATIONAL AEG PRESIDENT TO SPEAK

The Oregon section of the Association of Engineering Geologists will meet Thursday, May 17, at the Tualatin Ramada Inn (I-5 at the SW Nyberg Road exit). Underground tunneling will be the subject of the evening's talk by national AEG president Richard J. Proctor, Metropolitan Water District, Los Angeles, California. Social hour will be at 6:00 p.m., dinner at 7:00, and meeting at 8:00. For more information about the meeting, call Mavis Kent (635-4419). For dinner reservations, call Lew Gustafson (221-6460) or Jack Richards (221-3867).

GSOC LUNCHEON TALKS ANNOUNCED

The Geological Society of the Oregon Country holds noon luncheon meetings on the first and third Fridays of each month in Room A, adjacent to the cafeteria, third floor, Standard Plaza, 1100 SW 6th Avenue, Portland. Upcoming topics and speakers include:

May 18: ENERGY FOR THE FUTURE, talk by Harry T. Moorefield, office supervisor, Portland region, Atlantic Richfield Co.

June 1: SANDY RIVER GORGE, talk by Tom McAllister, Outdoor Editor, Oregon Journal.

June 15: SOUTHEAST RELIEVING SEWER: EAST PORTLAND, talk by Robert L. Gamer, Senior Geologist, Foundation Sciences, Inc.

For additional information, contact Viola Oberson, Program Chairman (282-3685). The meetings are open to the public. No reservations are required.

"You'd better make a decision soon. The continents are starting to drift apart."
Available publications

MISCELLANEOUS PAPERS
1. A description of some Oregon rocks and minerals, 1950: Dole $1.00
2. Laws relating to oil, gas, and geothermal exploration and development in Oregon
 Part 1. Oil and natural gas rules and regulations, 1977 1.00
 Part 2. Geothermal resources rules and regulations, 1977 1.00
3. Oregon's gold placers (reprints), 1954 .. 1.00
4. Oil and gas exploration in Oregon, rev. 1965: Stewart and Newton 1.00
5. Bibliography of theses on Oregon geology, 1959: Schicker
 Supplement, 1959-1963: Roberts .. 1.50
6. Available well records of oil and gas exploration in Oregon, rev. 1973: Newton 1.00
7. Index to published geologic mapping in Oregon, 1968: Corcoran 1.50
8. The Ore Bin, 1950-1974 .. 1.50
9. Index to the Ore Bin, 1950-1974 .. 1.50
10. Quicksilver deposits in Oregon, 1971: Brooks 1.50
11. Mosaic of Oregon from ERTS-1 Imagery, 1973 2.00
13. Investigations of nickel in Oregon, 1978: Ramp 5.00

GEOLOGIC MAPS
1. Geologic map of Galice Quadrangle, Oregon, 1953 1.50
2. Geologic map of Albany Quadrangle, Oregon, 1953 1.00
3. Reconnaissance geologic map of Lebanon Quadrangle, 1956 1.50
4. Geologic map of Bend Quadrangle and portion of High Cascade Mountains, 1957 1.50
5. Geologic map of Oregon west of 121st meridian, 1961 2.25
6. Geologic map of Oregon east of 121st meridian, 1977 3.75
7. GMS-3: Preliminary geologic map of Durkee Quadrangle, Oregon, 1967. 2.00
8. GMS-4: Oregon gravity maps, onshore and offshore, 1967 (folded) 3.00
9. GMS-5: Geologic map of Powers Quadrangle, Oregon, 1971 2.00
10. GMS-6: Preliminary report on geology of part of Snake River Canyon, 1974 6.50
11. GMS-7: Geology of the Oregon part of the Baker Quadrangle, Oregon, 1976 3.00
12. GMS-8: Complete Bouger gravity anomaly map, Cascade Mountain Range, central Oregon, 1978 3.00
13. GMS-9: Total field aeromagnetic anomaly map, Cascade Mountain Range, central Oregon, 1978 3.00
14. GMS-10: Low- to intermediate-temperature thermal springs and wells in Oregon, 1978 2.50

OIL AND GAS INVESTIGATIONS
1. Subsurface geology, lower Columbia and Willamette basins, 1969: Newton 3.50
2. Preliminary identifications of foraminifera, General Petroleum Long Bell #1 well 2.00
3. Preliminary identifications of foraminifera, E.M. Warren Coos County 1-7 well, 1973 2.00
4. Prospects for natural gas production or underground storage of pipeline gas 5.00

MISCELLANEOUS PUBLICATIONS
1. Landforms of Oregon (17 x 12 inches)25
2. Mining claims (State laws governing quartz and placer claims)50
3. Geological highway map, Pacific NW region, Oregon-Washington (published by AAPG) ... 3.00
4. Fifth Gold and Money Session and Gold Technical Session Proceedings, 1975 5.00
5. Back issues of The Ore Bin ... 25¢ over the counter; 50¢ mailed
6. Colored postcard, Geology of Oregon ... 10¢ each; 3 for 25¢; 7 for 50¢; 15 for 1.00
Available publications (continued)

BULLETINS

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Price</th>
<th>No. Copies</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Bibliography (1st supplement) geology and mineral resources of Oregon, 1947: Allen</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Papers on Tertiary foraminifera: Cushman, Stewart and Stewart, 1949: v. 2</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Geology and mineralization of Morning Mine region, 1948: Allen and Thayer</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Bibliography (2nd supplement) geology and mineral resources of Oregon, 1953: Steere</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Ferruginous bauxite deposits, Salem Hills, 1956: Corcoran and Libbey</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Lode mines, Granite mining district, Grant County, Oregon, 1959: Koch</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Lunar Geological Field Conference guidebook, 1965: Peterson and Groh, editors</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Andesite Conference guidebook, 1968: Dole</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Sixteenth biennial report of the Department, 1966-1968</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Mineral and water resources of Oregon, 1969 (unbound, without maps and tables)</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Proceedings of Andesite Conference, 1969: (copies)</td>
<td>10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Bibliography (4th supplement) geology and mineral resources of Oregon, 1969: Allen and Mason</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Seventeenth biennial report of the Department, 1968-1970</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Geology of selected lava tubes in Bend area, Oregon, 1971: Greeley</td>
<td>2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Bedrock geology of the Mitchell Quadrangle, Wheeler County, 1971</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Eighteenth biennial report of the Department, 1970-1972</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Geologic field trips in northern Oregon and southern Washington, 1973</td>
<td>5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Bibliography (5th supplement) geology and mineral resources of Oregon, 1973: Roberts</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Environmental geology inland Tillamook and Clatsop Counties, 1973: Beaulieu</td>
<td>7.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Geology and mineral resources of Coos County, 1973: Baldwin and others</td>
<td>6.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Environmental geology of Lincoln County, 1973: Schlicker and others</td>
<td>9.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Geologic hazards of Bull Run Watershed, Multnomah, Clackamas Counties, 1974: Beaulieu</td>
<td>6.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Eocene stratigraphy of southwestern Oregon, 1974: Baldwin</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Environmental geology of western Linn County, 1974: Beaulieu and others</td>
<td>9.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Environmental geology of coastal Lane County, 1974: Schlicker and others</td>
<td>9.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Nineteenth biennial report of the Department, 1972-1974</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Environmental geology of western Coos and Douglas Counties, 1975</td>
<td>9.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Geology and mineral resources of upper Chetco River drainage, 1975: Ramp</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Geology and mineral resources of Deschutes County, 1976</td>
<td>6.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Land use geology of western Curry County, 1976: Beaulieu</td>
<td>9.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Geologic hazards of parts of northern Hood River, Wasco, and Sherman Counties, Oregon, 1977: Beaulieu</td>
<td>8.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Fossils in Oregon (reprinted from The Ore Bin, 1977</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Geology, mineral resources, and rock material of Curry County, Oregon, 1977</td>
<td>7.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Land use geology of central Jackson County, Oregon, 1977: Beaulieu</td>
<td>9.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>North American ophiolites, 1977</td>
<td>7.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Magma genesis: AGU Chapman Conference on Partial Melting, 1977</td>
<td>12.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Bibliography (6th supplement) geology and mineral resources of Oregon, 1971-75, 1978</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL PAPERS

1. Mission, goals, and purposes of Oregon Department of Geology and Mineral Industries, 1978 | 2.00 | | |
2. Field geology of SW Broken Top Quadrangle, Oregon, 1978: Taylor | 3.50 | | |
3. Rock material resources of Clackamas, Columbia, Multnomah, and Washington Counties, Oregon, 1978: Gray | 7.00 | | |

SHORT PAPERS

18. Radioactive minerals prospectors should know, 1976: White, Schalter, Peterson | .75 | | |
21. Lightweight aggregate industry in Oregon, 1951: Mason | .25 | | |
24. The Almeda Mine, Josephine County, Oregon, 1967: Libbey | 3.00 | | |
25. Petrography, type Rattlesnake Formation, central Oregon, 1976: Enlows | 2.00 | | |
27. Rock material resources of Benton County, 1978: Schlicker and others | 4.00 | | |