THIS MONTH:
Scotts Mills Formation, a new sedimentary unit in the central Western Cascades
Mist Gas Field

ARCO Oil and Gas Company has completed its 1986 drilling program. The Cavenham Forest Industries well 41-9 and a re-drill of 41-9, located in sec. 9, T. 5 N., R. 4 W., were drilled to 2,500 and 2,501 ft, respectively, and were plugged and abandoned. The final well, Columbia County 31-8, located in sec. 8, T. 6 N., R. 5 W., was drilled to 4,054 ft and plugged. The results of ARCO's summer drilling were two successful completions, five dry holes, and two dry redrills.

Tenneco Oil Company spudded Columbia County 24-28, located in sec. 28, T. 6 N., R. 5 W., on November 6. Permit depth is 3,500 ft.

Willamette Valley wildcat spuds

On October 17, Damon Petroleum Corporation, Inc., commenced drilling Stauffer Farms 35-1, located in sec. 35, T. 4 S., R. 1 W., Marion County, a few miles east of Hubbard. Permit depth is 2,800 ft.

Geologic map added to Oregon offshore maps

The Oregon Department of Geology and Mineral Industries (DOGAMI) announces the publication of a new geologic map of the ocean floor off Oregon. The new release, Geologic Map of the Ocean Floor Off Oregon and the Adjacent Continental Margin, has been published as Map GMS-42 in DOGAMI's Geological Map Series.

With the release of GMS-42, DOGAMI has added a comprehensive geologic map to the continuing exploration of Oregon's offshore areas including the Exclusive Economic Zone proclaimed in 1983. This map was preceded by a mineral resources map (DOGAMI GMS-37) and a bibliography and index map (DOGAMI GMS-39). All three maps were produced through the joint efforts of the U.S. Minerals Management Service, the College of Oceanography of Oregon State University, and DOGAMI.

The new geologic map was compiled from a large number of published and unpublished data by C.P. Peterson and L.D. Kulm, both Oregon State University, and J.J. Gray, DOGAMI. The full-color map is approximately 3½ by 5 feet in size (scale 1:500,000) — and depicts the structure and over 60 different rock units of the ocean floor, continental slope, continental shelf, and adjacent onshore areas for the entire north-south extension of the Oregon coast. The map is accompanied by a four-page explanatory text.

The new geologic map is now available at the Oregon Department of Geology and Mineral Industries, 910 State Office Building, 1400 SW Fifth Avenue, Portland, Oregon 97201. The purchase price is $8. Orders under $50 require prepayment.

To our readers

Due to the length of this month's geologic paper, we are unable to print the usual list of available publications. We regret this restriction of your ordering convenience but assure you that the list can be mailed to you upon request. Write to the Department address, attention business office, or phone (503) 229-5580.

Reminder to renew! Since many of you may wish to renew this month, we left the renewal form in its usual place. However, if you wish to save the annual index, please use only a photocopy of the last page for renewing.

— The editors
The Scotts Mills Formation: Mid-Tertiary geologic history and paleogeography of the central Western Cascade Range, Oregon

by Paul R. Miller* and William N. Orr, Department of Geology, University of Oregon, Eugene, Oregon 97403

ABSTRACT
The name Scotts Mills Formation is proposed for a mid-Tertiary marginal marine sequence exposed along the central Western Cascades of Oregon. Three members are recognized. The basal Marquam Member, over 500 meters (m) thick, was deposited along a rockbound volcanic coastline during the late Oligocene. The Marquam Member is medium- to dark-gray or bluish-gray volcanic arenite and is locally highly fossiliferous. The 250-m-thick Abiqua Member is buff-tan tuffaceous arkose deposited by beach ridge accretion. The uppermost Crooked Finger Member is up to 200 m thick and represents swampy lowlands landward of the Abiqua beach ridge system. The Crooked Finger Member is olive-gray immature volcanic arenite with interbedded coals. The two uppermost Scotts Mills members interfinger with tuffaceous strata at the base of the Molalla Formation. During the early to middle Miocene, gentle folding occurred along the Scotts Mills anticline, and considerable erosional relief developed prior to the incursion of Columbia River basalt flows into the area. Subsequent erosion produced the inverted volcanic topography that characterizes the area today. Field relationships suggest that the latter half of the Oligocene was a period of tectonic quiescence along the ancestral Cascades. These relationships provide independent support of the two-phase model of tectonic rotation proposed by Magill and Cox (1981).

INTRODUCTION
Tertiary tectonic movement of the Oregon Western Cascades and associated crustal blocks in the Pacific Northwest has been the subject of much attention over the past several years (e.g., Simpson and Cox, 1977; Magill and Cox, 1981; and Bates and others, 1981). At the same time, sedimentary units in the Cascades have received comparatively little attention. Recent work by Miller (1984), Miller and Orr (1983a,b,c; 1984a,b), Orr and Miller (1982a,b; 1983a,b,c; 1984; 1986a,b), and Linder and others (1983) has focused almost solely on this area.

This paper describes sedimentary lithostratigraphic units exposed along the westernmost flanks of Oregon’s central Western Cascade Range (Figure 1) and supplements recent geological mapping in the area (Miller and Orr, 1984a,b; and Orr and Miller, 1984; 1986a,b). Additionally, a formal nomenclature is proposed for marginal marine and terrestrial sedimentary rocks deposited along the ancestral Cascade Arc. The field relationships discussed here provide independent evidence of geologic events occurring during the tectonically pivotal late Oligocene-early Miocene interval. Prior to this study, the timing of tectonic rotational events was inferred from paleomagnetic data.

The name Scotts Mills Formation is proposed for a 1,000-m-thick sequence of volcaniclastic sediments deposited along the western margin of the ancestral Cascades in the late Oligocene/early Miocene interval. The formation is divided into three members. In ascending order, these are the Marquam, Abiqua, and Crooked Finger Members. Additionally, the Molalla Formation is revised, and new reference sections are designated. The areal distribution of these units is shown on Figure 2 and on soon-to-be released geologic maps of the Drake Crossing and Elk Prairie 7½-minute quadrangle maps (Orr and Miller, 1986a,b).

*Current address: c/o R.E. Wright Associates, Inc., 3240 Schoolhouse Road, Middletown, Pennsylvania 17057.

The study area covers some 500 square kilometers (km²) lying 10 km east of Salem, Oregon. The most extensive exposures of sedimentary rock are in the vicinity of Scotts Mills, Oregon. These rocks disappear under Neogene volcanic flows to the south. Well-developed soils and lush vegetation characterize the area and restrict natural bedrock exposures to the canyons of northwest-trending streams draining the Western Cascades.

PREVIOUS WORK
Most of the rocks assigned here to the Scotts Mills Formation were referred to informally as the “Butte Creek beds” by Harper (1946). Peck and others (1964) mapped these rocks along with those of the Eugene Formation as “Tertiary marine rocks.” Hampton (1972) followed the designation of Peck and others (1964) and described the unit as “marine tuffaceous sandstone and sandstone.”

The lithologically similar Scotts Mills and Eugene Formations are of markedly different ages. Presently, the Eugene is assigned to the upper Eocene (Armentrout and others, 1983), whereas the Scotts Mills is of latest Oligocene age (Miller and Orr, this paper).

Durham and others (1942) assigned an early Miocene (Vaqueros) age to a diverse marine fauna preserved near the base of the Scotts Mills Formation. This was based on the presence of Pecten sesepeensis Durham, in addition to the pelecypod taxa Spisula albaria Conrad, Spisula cf. castilliformus Conrad, and Tellinopsis oregonensis Conrad. Durham and others noted that these marine sediments interfinger to the east with terrestrial sediments bearing a lowermost Miocene flora.

Peck and others (1964) and later Hampton (1972) described the Oligocene and Miocene Little Butte Volcanic Series of Wells (1956) in two parts. Nonmarine pyroclastic strata of the upper Little Butte were found to interfinger with sediments of Harper’s (1946) “Butte Creek beds.”

The base of the Little Butte consists of basaltic flows, tuffs, and breccias. Harper (1946) mapped the basalts as “pre-Butte Creek lavas” and assigned a questionable Eocene age to the unit. More than 100 m of erosional relief developed on the Little Butte
The Scotts Mills Formation is unconformably overlain by basalt of the Columbia River Basalt Group and by Miocene and younger andesitic rocks of the Sardine Formation (Thayer, 1939). These stratigraphic relationships are summarized in Figure 3.

STRUCTURE

Mid-Tertiary strata are exposed in the study area along the Scotts Mills inlier (Figure 2). Deposits of the Scotts Mills and Molalla Formations are gently upwarped with average dips of less than 10°. The Scotts Mills anticlinal axis strikes northeast-southwest and parallels the Sardine syncline and Mehama and Breitenbush anticlines to the east and the Willamette syncline to the west. Closure of the fold is indeterminate but must be on the order of several hundred meters.

At the core of the inlier, flows of Columbia River basalt filled deeply incised stream valleys cut into the anticline during uplift. These intracanyon flows cast the ancient drainage network in stone, and subsequent erosion has selectively removed the less resistant sedimentary rocks to yield an inverted volcanic topography. The modern, pronounced, northwest-trending drainage systems in the area are controlled by these inherited structural trends (see Figure 1).

SCOTTS MILLS FORMATION

Rocks assigned to the Scotts Mills Formation include those mapped by Harper (1946) as the "Butte Creek beds," and portions of those mapped as "marine rocks" by Peck and others (1964) and Hampton (1972). The unit stratotype for the Scotts Mills Formation is along Butte Creek between the 360- and 1,000-ft elevations. Just above Scotts Mills, the sedimentary section is interrupted by Columbia River basalt flows. Sedimentary rocks here record the basalt surface prior to Scotts Mills and Molalla Formation deposition (Miller, 1984).

Figure 3. Correlation chart for the central Western Cascades.
deposition in marine inner neritic to terrestrial environments and represent more than 16 km² of nearly continuous outcrops. All three of the Scotts Mills members are exposed along the Butte Creek section. Measurements of the Scotts Mills stratotype and correlative member reference sections appear in Figure 4.

Marquam Member
The lowermost and most environmentally diverse of the Scotts Mills members is the Marquam Member. The unit is named for exposures south of the community of Marquam, Oregon. The section stratotype is along Butte Creek, between the 360- and 720-ft elevations.

The wedge-shaped Marquam Member pinches out against the Little Butte basalt to the north of the study area (Figure 5).

Figure 4. Measured composite stratigraphic sections from the valleys of Butte, Abiqua, and Silver Creeks. Sections include unit stratotypes and reference sections for the Scotts Mills Formation and constituent members.

More than 300 m of Marquam sediments are exposed, and a drill hole in the area penetrated a 600-m section. The best exposures of the unit are in the deeply incised valleys of Butte and Abiqua Creeks. Upland areas underlain by the Marquam Member commonly host a thick colluvial and vegetative cover. Locally, erosion of the unit develops a hummocky topography.

Lithology and distribution: Weathered Marquam sediments are light to medium gray, and fresh samples are a characteristic bluish gray. Conglomeratic intervals assume the dark-gray to black color of the constituent basaltic clasts. Near its base, the member is abundantly fossiliferous. Miller (1984) and Miller and Orr (in press) have recognized several depositional facies within the Marquam, related to the erosional topography of the underlying Little Butte basalt surface.

Conglomeratic detritus and shallow-water epilithic faunas characterize sediments near the contact of the Marquam with the underlying Little Butte basalt. *Mytilus* (mussel) channel lag accumulations and cirriped (barnacle)-rich megaripple cross beds (Figure 6a) are characteristic of sediments onlapping the basalt high in the northern part of the study area. The distribution of these features with respect to the Little Butte erosional surface and the more basinward Marquam facies delineates an ancient headland flanked by progressively deeper marine water to the southwest and west.

Exhumed wave-cut platforms and sea stacks developed on the Little Butte basalt are common along Butte Creek (Figure 6b). These features were separated from the northern headland during Marquam sedimentation and are characterized by steep slopes surrounded by conglomeratic and bioclastic debris. The winding course of Butte Creek developed as stream incision sidestepped the erosional resistant exhumed basalt features in favor of the more easily eroded onlapping sediments.

Basinward of the exhumed shoal exposures, sandstones form steep cliffs along the valleys of Butte, Abiqua, and Silver Creeks (Figure 6c). These outcrops are comprised of sandstone beds less than a meter thick, annealed during storm-related resementation. Sandstone sequences here are commonly more than 15 m thick, and sharply truncated upper bounding surfaces typically mark the top of the interval. Lensed concentrations of mud-filled, articulated pelecypods *Aclia* and *Spisula* are common along the scoured bases of annealed strata. The deposits have yielded the remains of the mid-Tertiary cetacean *Aetiocetus* (Orr and Faulhaber, 1975; Orr and Miller, 1983a) and the trace fossil *Cylindrichnus* (Orr and Miller, 1983c).

Amalgamated sand sheets commonly give way upward and distally to thin-bedded, graded units comprised of simple sand-clay couplets. The individual graded units are as thin as 5 cm. Claystones are cross-stratified, and the underlying mud or sandstones show a weakly discernible parallel lamination.

Near the top of the member, tidally deposited sandstones and tuffaceous argillites are common. These deposits consist of flaser, wavy bedded, and micro-cross-laminated accumulations of volcanic ash, finely disseminated organic matter, and basaltic detritus. Tidal deposits here are thoroughly burrowed, and richly tuffaceous portions bear an abundance of carbonized leaves, wood fragments, and reedy plant remains.

Petrography: Sedimentary deposits of the Marquam Member consist of a mixture of basaltic rock fragments and bioclastic detritus. Lesser components include unstable mineral glasses and calcic plagioclase feldspars. Basaltic clasts in these deposits display all degrees of alteration, from fresh to almost completely decomposed.

Barnacle plate fragments are common in association with conglomeratic sediments and synedpositional exposures of Little Butte basalt. The plate-shaped fragments facilitate the development of shelter porosity in cirriped-rich deposits cemented with carbonate and later silica cements. Typical Marquam sandstone is shown in Figure 6d.
and very rapid depositional episodes punctuated by longer periods of
early Cascade Arc were transgressively inundated. Throughout
features including sea stacks and wave-cut platforms were cut
developed in the absence of contemporaneous bedrock expo­
limited deposition. .

...Oregon. See text for discussion.

Storm-dominated sedimentation was the primary,mechanism
Many of the characteristics of storm deposits described over
basaltic detritus was deposited as volcanic flows of the
tectonic or magmatic activity.

Abiqua Member
The Abiqua Member overlies deposits of the Marquam Mem­
ber and includes over 250 m of tuffaceous and arkosic sand­
domes and gravel conglomerates. The lens-shaped unit is elon­
gated parallel to the northeast-trending anticlinal axis. Physio­
graphically, Abiqua exposures are characterized by deep canyons
and low, dome-shaped hills in upland areas.
The unit stratotype is along Abiqua Creek 9 km southeast of
the intersection of Abiqua Road and Highway 213 in the north­
west corner of sec. 11, T. 7 S., R. 1 E., just upstream of the Abiqua
Road bridge over the creek. A reference section is designated
along Butte Creek between the 720- and 880-ft elevations.

Lithology and distribution: The Abiqua weathered to a red­
dish, light-buff to tan color on exposed lowland surfaces but is
locally bleached to a brilliant white in cliffs. Deposits tend to be
well indurated. Fresh exposures may take on a bluish hue but
most often differ from their more weathered counterparts only
on the basis of a lesser degree of iron oxide mineralization.

Most of the sequence is sandy, although small, gravel-filled
channel deposits are scattered throughout the section. In the
upper part of the member, mud-filled channels bearing Tere­
boared wood transect the earlier sandy deposits.

Characteristic primary sedimentary structures in the Abiqua
Member are parallel and low-angle cross-stratification (Figure
7) (the swash cross-stratification of Wunderlich, 1972). Struc­
tureless beds become increasingly common at the top of the
section in association with the Molalla Formation.
Basal strata of the member exposed in T. 6 S., Rs. 1 and 2 E.,
are richly fossiliferous. These consist of vertically repetitive
sequences of storm-deposited swell lag concentrates (of Brenner
and Davies, 1973) in association with massive or graded tuf­
faceous sands. Invertebrates recovered from this locality include
species of the gastropods Brucaloria, Acmaea, and Echinophoria
and the pelecypod Chlamys. In addition, shark teeth and arthro­
pod fragments have been recovered.

South of the boundary of Ts. 6 and 7 S., Abiqua Member
sandstones are transected by thin continuous horizons of the
concretionary carbonate (Figure 7b). These discordant features
are dark-reddish brown or dark-gray and are superimposed over
earlier primary sedimentary structures. Diagenetic carbonates
here are sheetlike and subparallel to the overlying disconformity.
These carbonate horizons are on the order of 10 cm thick and are
remarkably uniform throughout the area. Semeniuk and Meagher
(1981) termed analogous modern features nonpedogenic cal­
cretes and attributed their formation to the seasonal evapotran­
spiration regime of southwestern Australia.

Petrography: The appearance of extrabasinal detritus includ­
ing polycrystalline quartz, muscovite, and granitic or metamor­
phic rock fragments reflects a strong shift in provenance com­
pared to the underlying Marquam Member. The appearance of
these exotic sediments accompanies the introduction of large
amounts of volcanic ash into the marine environment. Tuffa­
faceous volcanic arkoses of the Abiqua Member are submature
to mature in texture and composition and are characterized by
simple cementational histories. Corrosive silica cements follow
earlier generations of carbonate cements in Abiqua deposits and
are of opaline character. Opaline silica was derived from the
solution of unstable mineral glasses scattered throughout the
section and is locally recrystallized to metaquartz. Well-devel­
oped quartz overgrowths represent a restricted occurrence in the
member and are found in association with mature, arkosic detri­
tus (Figure 7d).

Figure 5. Drawings showing generalized geometries of mid­
Tertiary geologic units exposed in the central Western Cascades of
Oregon. See text for discussion.
Facies interpretation: The distribution of Abiqua Member facies is an indirect effect of the Little Butte basalt paleotopography. Widespread scouring with the development of scour-and-swell lags was common in close proximity to the ancient basaltic headland in the northern part of the study area. Great volumes of sediment were entrained in southerly longshore transport, resulting in the thorough admixture of northerly derived extrabasinal sands with pyroclastic debris from the ash-mantled landscape to the east. The development of cumulative calcrite horizons permits calculations on the timing of Abiqua Member sedimentation. Reineck and Singh (1980), in summarizing the studies of Gile and others (1966), Reeves (1970), Gardner (1972), and Gouldie (1973), suggest that “calcrite is formed near surface in stable geomorphic areas, where ... there is negligible sediment deposition.” Leeder (1975) describes massive calcrites formed under a semiarid flood basin setting as requiring a minimum of 10,000 years.

Depositional environments associated with Abiqua calcrites are comparable with modern calcrite-forming environments. Assuming Leeder’s minimum time constraint, periods of geomorphic stability on the order of 10,000 years were punctuated by brief periods of instability and aggradation of Abiqua sediments. The 1-m average spacing of Abiqua calcrites yields an average sedimentation rate of 1 m per 10,000 years to the 250-m-thick section. At this rate, a minimum of 2.5 million years would be required for Abiqua deposition.

Crooked Finger Member
The Crooked Finger Member includes more than 200 m of weakly consolidated, immature volcaniclastic detritus with interbedded coals. The best exposures flank Crooked Finger Ridge (which is the divide between Abiqua and Butte Creeks) and crop out along the valleys of Butte, Abiqua, and Coal Creeks. Physiographically, the unit forms irregular, lobate slopes with land-
sliding in the south-central and southwestern portions of the study area. Owing to its weakly consolidated nature, the unit is poorly exposed and supports a thick soil and vegetation cover.

The unit stratotype is between the 880- and 1,010-ft elevation along Butte Creek. A reference section is designated east of the confluence of Butte and Coal Creeks in the southwest corner of sec. 32, T. 6 S., R. 2 E., along Coal Creek. A second reference section is situated in the southern half of sec. 13, T. 7 S., R. 1 E., along Abiqua Creek.

Lithology and distribution: Exposed Crooked Finger sediments are medium gray to brown, with reddish-brown oxidized patches on weathered surfaces. Fresh samples are bluish gray to drab green and resemble those of the Marquam Member. Coals of variable grade characterize the unit in combination with an abundance of muddy, tidally influenced channel-fill deposits.

Coal beds on the order of 40 centimeters (cm) thick are
irregularly shaped, turbid masses of ferruginous clay supporting angular plagioclase feldspar grains. Accessory constituents of Crooked Finger Member sediments include biotite, pumice fragments, and locally concentrated glass shards. Additionally, spores and pollen are commonly preserved throughout the unit.

Facies interpretation: Deposits of the Crooked Finger Member closely resemble those of high-sinuosity streams as described by Moody-Stuart (1966) and Reineck and Singh (1980). The deposition of coal-bearing fluvial sequences of the Crooked Finger Member occurred in swampy alluvial lowlands landward of the Abiqua beach ridge system. These swampy areas represent the landward extension of the Little Butte embayment. Along this structurally controlled low, meandering and anastomosing fluvial systems flowed parallel to the axis of the embayment. Near the strand, the fluvial systems were diverted by the Abiqua beach ridge system. Modern depositional systems analogous to the Crooked Finger/Abiqua system are described by Coleman (1976) and by Ruxton (1970). These authors describe facies distribution along the wave-dominated San Francisco and Senegal Deltas and from young volcanic arc terrain in Papua, New Guinea.

PETROLOGIC RELATIONSHIPS: SCOTTS MILLS FORMATION SANDSTONES

Compositional plots of sandstones from the Marquam, Abiqua, and Crooked Finger Members are presented in Figure 9. Sandstones representative of each unit were selected for modal analysis. A point count of more than 100 grains provided the modal percentages plotted on the ternary diagrams. The results of grain counts of Scotts Mills Formation sandstones are summarized in Table 1.

QFL and QmPK diagrams are compared with similar data from Dickinson and Suzcek (1979) (Figure 9a). Those authors were able to discern discrete fields indicative of tectonic provenance. In both diagrams, the Marquam and Crooked Finger Members plot in the undissected magmatic arc field. Abiqua sandstones overlap the dissected arc field in the QFL plot (Figure 9a) and are transitional between the dissected and undissected arc fields on the QmPK diagram. This latter relationship suggests mixing of detritus originating in diverse source terrains.

An additional ternary diagram (QUpcTpc) plots twinned and untwinned plagioclase (Tpc and Upc, respectively) against quartz (Q) (Figure 9b). Again, sandstones of the Scotts Mills Formation plot in two distinct fields, with the Marquam and Crooked Finger Members showing an enrichment in twinned plagioclase. Plagioclase in Little Butte basalts is almost wholly twinned, and zoning is common. The predominance of twinned plagioclase in these units reflects their common Little Butte basalt provenance.

The QFL and QUpcTpc plots were compared by drawing tie lines connecting plots of individual sample compositions between the two diagrams (Figure 9b). Abiqua sandstone compositions show a pronounced covariance between quartz and untwinned plagioclase feldspar. The high proportion of quartz in these sediments implies a source rich in modal quartz. This silicic provenance contrasts sharply with that of the Marquam and Crooked Finger Members, which were derived from the erosion of mafic volcanic flows.

SCOTTS MILLS FORMATION AGE AND MARINE FAUNA

Marine environments from littoral rocky/sandy to middle and outer neritic are indicated by Marquam and Abiqua Member invertebrate faunas. The littoral sandy facies is best reflected in the Abiqua but does develop in some horizons of the Marquam (Table 2).

Within the lower two Scotts Mills members (Marquam and lowermost Abiqua), all of the faunas are assignable to the uppermost Oligocene Juanian West Coast provincial molluscan stage. Many of the well-preserved faunas are further assignable.
Table 1. Framework grain counts of selected Scotts Mills Formation sandstones

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>UNIT</th>
<th>QUARTZ</th>
<th>PLUMmockE</th>
<th>K-Feldspar</th>
<th>VR</th>
<th>FLY</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>615</td>
<td>Marquam</td>
<td>10 10 10</td>
<td>0 0 0</td>
</tr>
<tr>
<td>952</td>
<td>0 0 0</td>
</tr>
<tr>
<td>95-1</td>
<td>95-2</td>
<td>0 0 0</td>
</tr>
<tr>
<td>95-3</td>
<td>95-4</td>
<td>0 0 0</td>
</tr>
<tr>
<td>95-5</td>
<td>95-6</td>
<td>0 0 0</td>
</tr>
</tbody>
</table>

Abbreviations used in table 1: 95-5, single grained; SC, semi-composite; C, composite; TTL, total in group; Fli, feldspar; VR, volcanic rock fragments; PP, pedogenic rock fragments; BL, biotite; CH, chlorite; CM, muscovite; GL, glauconite; T, feldspar; vs, pebbles.

Legend and distribution

Stream-deposited volcanic and pyroclastic materials are especially common along the western fringe of the study area. At the Echinophoria apta zone of the upper Juanian. This level at approximately 24 million years before the present (m.y. B.P.) is the marine Oligocene high-water mark for the Oregon Western Cascades.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

Linder and others (1983) have reported several species of the echinoid genera Salenia, Kewia, Lytechinus, and Arbacia from the base of the Abiqua Member. According to Wyatt Durham (personal communication, 1984), several elements of this echinoid assemblage suggest an assignment to the uppermost Oligocene.

MOLALLA FORMATION

Although a thorough analysis of the Molalla Formation is beyond the scope of this study, some discussion is warranted in view of its importance in relationship with the Scotts Mills Formation. Additionally, the unit is treated here to clarify field relationships and to enumerate criteria on which the unit was mapped by Miller and Orr (1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.

In addition to molluscs, two other related lines of evidence exist for the late Oligocene age assignment. Barnacles from the Marquam Member have been examined by Victor A. Zullo (personal communication, 1984). He reports species of Balanus and suggests that their presence here may represent an interval immediately below the Oligocene/Miocene boundary. This occurrence represents the oldest known North American incidence of the genus Balanus.
pyroclastic volcanism may have encouraged frequent conflagrations.

Facies interpretation

Stacked paleosols in the Molalla Formation are indicative of extended periods of limited sedimentation. Intervening periods of rapid sedimentation may have occurred in response to geomorphic instability accompanying the destruction of the vegetational cover by fire. Permineralized burned and charred wood throughout the Molalla and the widespread occurrence of thick ripple-bedded sandstone sequences support this. Cyclic periods of geomorphic stability/instability are indicated in both the Abiqua Member of the Scotts Mill Formation and the Molalla Formation. Longer term periodicity for major pyroclastic phases along the Western Cascades was originally suggested by McBirney and others (1974).

The sandstone and claystone sequences exposed along Molalla Forest Camp Road were developed as flow from the adjacent channels rose above the river bank and onto the flood plain during flood events. The sandy portions of the individual sequences were deposited during the peak of the flood, when current velocities were at a maximum. During waning of the floods, muds were deposited from suspension, draping over the sandy portions. Subsequent overbank floods repeated the process, and thick sequences of sheetflood deposits resulted.

The facies distribution within the Molalla Formation section delineates the channel of a major river system comparable in size to the modern Molalla River. Channel deposits in the eastern part of the study area are flanked by thick accumulations of sheetflood deposits. Toward the west, these deposits give way to well-drained paleosols and cross-stratified tuffaceous sediments that interfinger with coal-bearing strata of the Crooked Finger Member. Here, sediments of the Molalla Formation represent terrace deposits associated with the marginal areas of the Crooked Finger alluvial system.

Stratigraphic relationships indicate that sedimentation in the Crooked Finger alluvial lowland had ended prior to the deposition of upper Molalla Formation strata. Rather than being indicative of two separate, genetically unrelated drainage systems, alluvial sediments of both the Crooked Finger Member and the Molalla Formation are considered to have been deposited by an ancestral Molalla River. Upper Molalla Formation sediments may have been deposited as drainage was deflected to the north during folding of the Scotts Mills anticline (see drawings on front cover).

Alternatively, reorganization of the pre-existing drainage may have followed the deposition of intracanyon Columbia River basalt flows. Tuff clasts in the Crooked Finger suggest the development of antecedent drainage during folding. The elongate interfluve separating the valleys of Butte and Abiqua Creeks may reflect the topographic inversion of intracanyon flows that blocked drainage across the Scotts Mills anticline. This feature parallels paleocurrents in the underlying strata and shows a distinctly channel-form shape. The diversion of drainage by intracanyon flows explains the absence of Molalla Formation contact relationships with Columbia River Basalt Group strata.

Deposition of the lower and middle Miocene Molalla Formation occurred along a humid-climate fluvial system originating in the Little Butte highlands to the east. Deposition was characterized by intermittent sedimentation rates and poorly developed, rapidly buried soils. The unit accumulated under a warm-climate, broad-leaf forest cover (Wolfe, 1969).

Age relationships

Miller (1984), Miller and Orr (1984a,b), and Orr and Miller (1984; 1986a,b) included the upper pyroclastic portion of the Little Butte Volcanic Series with the Molalla Formation during detailed mapping of the area. Hampton (1972) had followed the opposite approach in his map of the Salem-Molalla Slope area, including the Molalla Formation in the Little Butte Volcanic Series.

We consider the Molalla as a distinct formation for several reasons. Sediments assigned to the Molalla Formation in this report clearly overlie an erosional surface of considerable relief developed on basaltic flows of the Little Butte Volcanic Series. Marine sediments of the Scotts Mills Formation rest on this same unconformity, and portions of the latter interfinger with Molalla Formation strata. These relationships indicate that considerable time separates the extrusion of the Little Butte basalts and Molalla Formation volcanism.

The interfingered relationship of fossiliferous strata of the Scotts Mills Formation with portions of the Molalla Formation suggests an early Miocene age for the upper portions of the latter unit. These relationships are best displayed at the High Hill reference section. Floral remains scattered throughout the unit were considered to be equivalent in age to those in the lower Miocene Eagle Creek Formation by R.W. Brown (in Trimble, 1957). Additionally, the Molalla Formation has been dated on the basis of floral remains by Wolfe and Brown (in Peck and others, 1964) as early Miocene. More recently, Wolfe (1969)

Figure 10. a. Lateral accretion foresets developed during migration of gravelly channel. Outcrop exposed along Molalla Forest Camp Road in association with Molalla type section. b. Overbank sequence comprised of repetitive sand-clay couplets, exposed along the Molalla Forest Camp Road.
recognized two floras from the Molalla area as post-Columbia River Basalt Group age. Obradovich (in Walker and others, 1974) dated the Molalla flora at 12.2 and 12.9 m.y. B.P., or middle Miocene.

The younger ages for the Molalla Formation were obtained from floras near the top of the nearly 300-m-thick Molalla Formation section exposed along Molalla Forest Camp Road, above the Molalla River. The older dates for the unit were obtained from lower portions of the section, in some cases close to the unconformity with the Little Butte basalt.

The present authors assign an early to middle Miocene age to the Molalla Formation. We extend the age to include the early Miocene in light of the interfingerling nature and coincident stratigraphic position of the Molalla and Scotts Mills Formations and the early Miocene age of leaves from the Molalla Formation (e.g., U.S. Geological Survey paleobotanical loc. 8292).

PALEOGEOGRAPHY AND GEOLOGIC HISTORY

During Marquam deposition, the Little Butte basalt formed a headland in the north of the study area, with stacks and wave-cut platforms to the south and west (see artwork on front cover). According to Peck and others (1964), the Little Butte flows were extruded along a north-trending ancestral Cascade Arc and were significantly eroded by late Oligocene time. The irregular rocky coastline along which Marquam deposition occurred was characterized by deep marine embayments, steep submarine slopes, and oligomictic basaltic detritus. The end of Marquam Member deposition coincides with a major pyroclastic eruptive phase along the Cascade Arc near the Oligocene/Miocene boundary (e.g., McBirney and others, 1974).

The dominantly marine Abiqua Member and the wholly terrestrial Molalla Formation include tuffaceous sediments derived from the erosion of ash-fall tuffs mantling the volcanic landscape to the east. In the terrestrial realm, weakly consolidated pyroclastic deposits were stabilized by soil development and forest vegetation. During periods of geomorphic instability, these sediments were rapidly eroded and transported basinward.

At the coast, tuffaceous detritus was shed into the sea along a prograding wave-dominated delta, then reworked into a broad, accretional beach ridge complex developed along the strandline. Longshore drift facilitated the mixture of extrabasinal detritus derived from as far east as the northern Rockies with locally derived tuffaceous detritus along the length of the late Oligocene-early Miocene strandline.

Landward of the Abiqua beach ridge system, the Crooked Finger Member was deposited in a flood basin/high sinuosity stream depositional environment. This thickly vegetated, swampy alluvial lowland trended toward the present northwest as the landward extension of the Little Butte embayment.

In middle Miocene time, the Columbia River basalt had been erupted, and major folding and faulting along the deeply incised sedimentary inlier was complete. These low-viscosity basalts drowned much of the sedimentary landscape. The greatest thicknesses of middle Miocene basalts accumulated in stream valleys incised prior to eruption and following the marine regression. Subsequent erosion selectively removed the less resistant sedimentary rocks, producing inverted volcanic topography.

DISCUSSION

The paleotopography of the underlying Little Butte basalt surface exerted control on the mid-Tertiary depositional systems described in this report. The littoral zone in a volcanic-arc setting characteristically hosts a narrow, poorly developed coastal plain with an abundance of rocky exposures. Embayments between these rugged rock-bound segments represent areas of thick detrital sediment accumulation and host areas where marine and alluvial constructional processes predominate. Because of the disequilibrium conditions under which ash-fall or -flow materials are deposited, they are often rapidly reworked and redeposited in these low-lying areas.

The great volumes of pyroclastic detritus shed into the Little Butte embayment ended Marquam Member sedimentation. Sedimentary mechanisms operating under the low sediment yield conditions of Marquam deposition became ineffective, and a rapid progradation of the strand ensued. In the terrestrial realm, alluvial deposits built out onto the low-lying areas that were associated with the more subdued basalt topography. In the marine environment, these materials were reworked along the Abiqua beach ridge complex during successive accretionary episodes.

Fluvial systems landward of the beach ridge system transported materials in a direction parallel to the axis of the embayment. Low-lying areas of the alluvial plain hosted widespread swamp deposition, and the better drained areas were the sites of flood plains or alluvial terraces. Aggradation of the drainage systems accompanied progradation of the strand, with thick sequences of fluvial sediments and stacked paleosols.

According to Van Atta (1971), arkosic sediments of the Scappoose Formation were deposited along the seaward margins of an ancestral Columbia River delta. Sediments of the Scappoose are compositionally similar to those of the Abiqua Member and were deposited less than 100 km north of the Little Butte embayment. The similarities and chronostratigraphic relationships between the two units suggest that a veneer of sandy arkosic detritus, in part derived from the continental interior, was deposited along the length of this middle Tertiary coastline.

Depositional environments described here are comparable to the modern deposits of Papua, New Guinea (Ruxton, 1970). The modern example shows an almost identical suite of depositional environments similarly distributed relative to the bedrock surface topography. Additionally, the two settings are lithologically analogous. The Papuan deposits are dominantly plagioclase and lithic fragments in size intervals less than fine sand. Coarse detritus is composed almost wholly of volcanic rock fragments. Sediments from both settings are dominantly immature, with the exception of mature beach ridge sediments.

CONCLUSIONS

The mid-Tertiary marginal marine sequence exposed along the Scotts Mills inlier records a remarkably diverse assemblage of well-preserved paleoenvironments. Several ancient depositional systems can be recognized, including a storm-deposited rocky coastline, an accretionary beach ridge complex, an alluvial lowland and swamp, and a humid-climate fluvial system. The Scotts Mills and Molalla Formation paleoenvironments are analogous to modern depositional systems in Papua, New Guinea, as well as to sedimentary deposits elsewhere along the Cascade Arc.

Sediments of the Scotts Mills and Molalla Formations record the response of both terrestrial and nearshore depositional systems to widespread pyroclastic volcanism along the early Cascade Volcanic Arc. Prior to the major pyroclastic phase marking the Oligocene-Miocene boundary along the Western Cascades, oligomictic intrabasinal sediments were deposited in the Little Butte embayment. The well-developed Little Butte basalt erosional surface and the paucity of sediments introduced into the nearshore environment indicate little magmatic or tectonic activity during the latter half of the Oligocene.

In contradistinction to the tectonic quiescence suggested for the middle to late Oligocene, sediments deposited during the early to early middle Miocene record a period of intense magmatic and tectonic activity. The beginning of this interval is marked by widespread pyroclastic volcanism along the length of the Cascade Arc. Following the ensuing progradation of tuffaceous strandline sediments, deformation occurred along a number of parallel northwest-trending folds. Subsequently, the incursion

OREGON GEOLOGY, VOLUME 48, NUMBER 12, DECEMBER 1986
of middle Miocene intracanyon flows of the Columbia River Basalt Group led to a dramatic reorganization of pre-existing Western Cascade drainage systems. On the basis of palaeomagnetic evidence, Magill and Cox (1981) suggested that the clockwise rotation of microplates in the Pacific Northwest occurred in two discrete phases. Those authors concluded that the Oligocene represents a tectonically quiet interval separating Coast Range accretion and Basin and Range extension. This report provides an independent line of evidence supporting this conclusion.

ACKNOWLEDGMENTS

This article is based on a portion of a graduate research thesis submitted to the University of Oregon by Paul Miller. Funding for this project included grants from Marathon Oil, the Geological Society of America, Sigma Xi, and the Oregon Department of Geology and Mineral Industries to Miller, and National Science Foundation Grant Number EAR-8108729 to Orr. An early draft of this manuscript was read by Paul Hammond, for which the authors are grateful. Additionally, the authors thank Alan Niem, Ewart Baldwin, and Alan Griggs for helpful discussions in the field.

REFERENCES CITED

Miller, P.R., and Orr, W.N., (in press), Mid-Tertiary transgressive rocky-coastal sedimentation, central Western Cascades, Oregon: Journal of Sedimentary Petrology.

--- 1983a, Depositional environments of the "Bute Creek beds," central Western Cascades [abs.]: Oregon Academy of Science Proceedings, v. 19, p. 56.

--- 1984c, Mid-Tertiary geologic history of the Oregon Western Cascades [abs.]: EOS (American Geophysical Union Transactions), v. 65, no. 17, p. 330.

Newton, V.C., Jr., 1969, Subsurface geology of the lower Columbia and Willamette basins, Oregon: Oregon Department of Geology and Mineral Industries Oil and Gas Investigation 2, 121 p.

Orr, W.N., and Miller, P.R., 1982a, Mid-Tertiary stratigraphy of the Oregon Western Cascades [abs.]: Geological Society of America Abstracts with Programs, v. 14, no. 4, p. 222.

--- 1983a, Fossil Cetacea (whales) in the Oregon Western Cascades: Geology, v. 45, no. 9, p. 95-98.

--- 1983b, Mid-Tertiary basaltic subaerial complexes in the Oregon Western Cascades [abs.]: Pacific Section, AAPG/SEPM/SEG, annual joint convention, Sacramento, Calif., Abstracts with Programs, p. 122.

--- 1984a, Geologic map of the Stayton NE quadrangle, Oregon: Oregon Department of Geology and Mineral Industries Geologic Map Series GMS-34.

Index to OREGON GEOLOGY, volume 48, 1986 (continued)

Brueg, W.G., Oil & gas exploration for nongeologists 8:90-97
Cummings, M.L., Co-author, Pollock & Cummings 1:3-8
Diament, Eagle-Picher mine (Brittain) 9:108-109
Eichelberger, J.C., Co-author, Keith & others 9:103-107+110
Engh, K.R., Structural geology, Rastus Mtn. (thesis abs.) 6:74
Fishing & placer mining (Throop & Smith) 3:27-38
Gannett, M.W., Co-author, Keith & others 9:103-107+110
Geitgey, R.P., New DOGAMI industrial mineral geologist 5:58
Geothermal exploration, 1985 (Woller & others) 7:81-85
Gray Butte limestone & areneit exposure 4:45-46
Gray, J.J., Co-author, Ferns & others 3:39-44
Gray, J.J., & Baxter, G., A reinterpretation of the ... 4:45-46
Great Butte limestone 5:51-55+58
Green Mtn.-Youn River (Peterson thesis) 1:9
Hanson, L.G., Scenes from ancient Portland 11:130-131
Hubbard Glacier, Alaska, (USGS news) 9:110
Huber, S.K., In memoriam 8:98
Johnson, D.M., The legacy of ancient Lake Modoc (review) 1:8+10
Johnson, S.R., New DOGAMI board chairman 1:10
Karlin, R., Paleomagnetism, NE Pacific (thesis abs.) 6:73
Keith, T.E.C., & others, Lithology & alteration, RDO-1, Newberry caldera 9:103-107+110
Kraus, D.J., & Pugh, R.N., December 18, 1985, fireball 3:34
Landslides underestimated (USGS news) 6:74
Landslides, The Dalles (Sholin thesis) 1:9
Miller, P.R., & Orr, W.N., Scotts Mills Formation 12:139-151
Massive sulfide, Turner-Albright deposit (Strickler) 10:115-122
McFadden, J.J., Fossil flora near Gray Butte 5:51-55+58
Meteorites & fireballs 4:39-44, 7:79-80+85
Mist Gas Field history (Newton) 1:10
N. Santiam mining area (Pollock & Cummings) 1:3-8, 2:22
NE Pacific sediments (Karlin thesis) 6:73
Newberry caldera (Keith & others) 9:103-107+110
Newton, V.C., Jr., Letter to the editor 1:10
Nolf, B.O., Honored at Bend College 8:98
Oil & gas exploration for nongeologists (Brueg) 8:90-97
Oil and gas ... 1:2, 2:14, 3:26, 3:29-34, 4:38, 5:50, 6:74

7:78, 8:90, 9:102, 10:114, 11:126, 12:138
Orr, W.N., Co-author, Miller & Orr 12:139-151
Salem exhibits ... 4:38, 7:86
Paleontology .. 5:51-55+58
Peterson, C.P., Green Mtn.-Youngs River (thesis abs.) 1:9
Pollock, J.M., & Cummings, M.L., N. Santiam mining area field trip 1:3-8, 2:22
Porphyry copper, W. Cascades (Power thesis) 5:56
Portland area major geologic events (Hanson) 11:130-131
Power, S.G., Porphyry copper, W. Cascades (thesis abs.) 5:56
Priest, G.R., Co-author, Woller & others 7:81-85
Prineville quadrangle, NE¼ (Bingert thesis) 6:73
Publications by DOGAMI announced
GMS-39, Offshore bibliography & index 3:26
OFR 0-86-02, Geothermal gradient data, 1982-84 6:70
OFR 0-86-04, Stevenson Min. mineral assessment 9:102
OFR 0-86-05, Arbuckle Mtn. coal field 3:34
OFR 0-86-06, Gorda Ridge, benthos 5:57
OFR 0-86-07, Gorda Ridge, nekton 5:57
OFR 0-86-08, Gorda Ridge, plankton 5:57
OFR 0-86-09, Gorda Ridge, seabirds 5:57
OFR 0-86-10, Coastal black sands inventory 6:62
OFR 0-86-11, Gorda Ridge, benthic fauna 8:97
OFR 0-86-12, Gorda Ridge, heat flow 8:97
OFR 0-86-13, Gorda Ridge, trace metals 8:97
OFR 0-86-14, Gorda Ridge hydrothermal plumes 8:97
OFR 0-86-15, Gorda Ridge, seismic activity 8:97
OFR 0-86-16, Gorda Ridge, dredge samples 8:97
OFR 0-86-17, Survey, map revision needs 11:126
Publications by others announced and reviewed
Dicken, S. & E., Ancient Lake Modoc 1:8+10
USBLM, SE Oregon geochemical data 8:98
USGS, Atlas of the EEZ 6:72
USGS, MF-1735, Marial quadrangle map 7:86
USGS, Mount Hood & vicinity map 5:58
Pugh, R.N., Co-author (Kraus & Pugh) 3:34
Pugh, R.N., & Allen, J.E., Origin of the 8:98
Willamette Meteorite 7:79-80+85
Ramp, L., Co-author, Ferns & others 4:39-44
Rastus Mountain area (Engh thesis) 6:74
Reef, J.W., Unity Reservoir tuff breccia (thesis abs.) 5:56
Ryberg, P.T., Sedimentation, Umpqua Group (thesis abs.) 6:73
Scotts Mills Formation (Miller & Orr) 12:139-151
Sholin, M.H., Landslide hazards, The Dalles (thesis abs.) 1:9
Simstustus Formation (Smith) 6:63-72
Smith, A.K., Co-author (Throop & Smith) 3:27-28
Smith, G.A., Simstustus Formation, new Miocene unit 6:63-72
Strickler, M.D., Geologic setting, Turner-Albright deposit 10:115-122
Umpqua Group (Ryberg thesis) 6:73
Unity Reservoir tuff breccia (Reef thesis) 5:56
Waibel, A.F., Co-author, Keith & others 9:103-107+110
Wermel, D.E., New DOGAMI petroleum geologist 7:86
Woller, N.M., & others, Geothermal exploration, 1985 7:81-85
Zeolite, Durkee deposit (Sheppard & Gude) 11:127-132

OREGON GEOLOGY
910 State Office Building, 1400 SW Fifth Avenue,
Portland, Oregon 97201

Second Class Matter
POSTMASTER: Form 3579 requested

LEGISLATIVE FISCAL OFFICE
H178 Capitol Building
Salem, OR 97310

PUBLICATIONS ORDER
Fill in appropriate blanks and send sheet to Department.
Minimum mail order $1.00. All sales are final. Publications are sent postpaid. Payment must accompany orders of less than $50.00. Foreign orders: Please remit in U.S. dollars.
NAME ____________________________
ADDRESS ____________________________ ZIP ______
Amount enclosed $______

OREGON GEOLOGY

Renewal New Subscription Gift
____ 1 Year ($6.00) ______ 3 Years ($15.00) ______

NAME ____________________________ ZIP ______
Amount enclosed $______
If gift: From ______________

If you are not completely satisfied, return the order within 30 days for refund or replacement.

Two years, $8.50, three years, $12.50, foreign, $14.00. Mailed to foreign addresses only.

OREGON GEOLOGY

OREGON GEOLOGY

Second Class Matter
POSTMASTER: Form 3579 requested

75CU0000

LEGISLATIVE FISCAL OFFICE
H178 Capitol Building
Salem, OR 97310

PUBLICATIONS ORDER
Fill in appropriate blanks and send sheet to Department.
Minimum mail order $1.00. All sales are final. Publications are sent postpaid. Payment must accompany orders of less than $50.00. Foreign orders: Please remit in U.S. dollars.
NAME ____________________________
ADDRESS ____________________________ ZIP ______
Amount enclosed $______

OREGON GEOLOGY

Renewal New Subscription Gift
____ 1 Year ($6.00) ______ 3 Years ($15.00) ______

NAME ____________________________ ZIP ______
Amount enclosed $______
If gift: From ______________

Two years, $8.50, three years, $12.50, foreign, $14.00. Mailed to foreign addresses only.