OREGON GEOLOGY
ISSN 0164-3304
VOLUME 49, NUMBER 1 JANUARY 1987
Published monthly by the Oregon Department of Geology and Mineral Industries (Volumes 1 through 40 were entitled The Ore Bin).

Governing Board
Allen P. Stinchfield, Chair North Bend
Donald A. Haagensen, Portland
Sidney R. Johnson Baker

State Geologist Donald A. Hull
Deputy State Geologist John D. Beaulieu
Publications Manager/Editor Beverly F. Vogt
Associate Editor Klaus K. E. Neuendorf

Main Office: 910 State Office Building, 1400 SW Fifth Ave., Portland 97201, phone (503) 229-5580.
Baker Field Office: 1831 First Street, Baker 97814, phone (503) 523-3153 Howard C. Brooks, Resident Geologist
Grants Pass Field Office: 312 SE “H” Street, Grants Pass 97526, phone (503) 476-2496 Len Ramp, Resident Geologist
Mined Land Reclamation Program: 1534 Queen Ave. SE, Albany 97321, phone (503) 967-2039 Paul Lawson, Supervisor

Second class postage paid at Portland, Oregon. Subscription rates: 1 year $6; 3 years, $15. Single issues, $5 at counter, $1 mailed. Available back issues of Ore Bin: $50 at counter, $1 mailed. Address subscription orders, renewals, and changes of address to Oregon Geology, 910 State Office Building, Portland, OR 97201. Permission is granted to reprint information contained herein. Credit given to Oregon Department of Geology and Mineral Industries for compiling this information will be appreciated. POSTMASTER: Send address changes to Oregon Geology, 910 State Office Building, Portland, OR 97201.

Information for contributors
Oregon Geology is designed to reach a wide spectrum of readers interested in the geology and mineral industry of Oregon. Manuscript contributions are invited on both technical and general-interest subjects relating to Oregon geology. Two copies of the manuscript should be submitted, typed double-spaced throughout (including references) and on one side of the paper only. Graphic illustrations should be camera-ready; photographs should be black-and-white glossies. All figures should be clearly marked, and all figure captions should be typed together on a separate sheet of paper.

The style to be followed is generally that of U.S. Geological Survey publications (see the USGS manual Suggestions to Authors, 6th ed., 1978). The bibliography should be limited to “References Cited.” Authors are responsible for the accuracy of the bibliographic references. Names of reviewers should be included in the “Acknowledgments.”

Authors will receive 20 complimentary copies of the issue containing their contribution. Manuscripts, news, notices, and meeting announcements should be sent to Beverly F. Vogt, Publications Manager, at the Portland office of ODOGAMI.

COVER ILLUSTRATION
The Oregon Department of Geology and Mineral Industries is celebrating 1987 as the fiftieth year since its inception. In commemoration of the event, Department cartographer Mark Neuhaus designed and created this special department seal.

OREGON GEOLOGY
VOL. 49, NO. 1, JANUARY 1987

OIL AND GAS NEWS

MIST GAS FIELD
Tenneco Oil Company has plugged and abandoned Columbia County 24-28, located in sec. 28, T. 6 N., R. 5 W. Total depth was 1,928 ft.

Oregon Natural Gas Development (ONGD) has commenced drilling at the natural gas storage project at Mist. Located in sec. 10, T. 6 N., R. 5 W., OM 12d-l0 was drilled as an observation well to a total depth of 2,805 ft. Two additional observation monitor wells are currently being simultaneously drilled. These are OM 43c-3, located in sec. 3, T. 6 N., R. 5 W., and OM 44a-10, located in sec. 10, T. 6 N., R. 5 W. These wells are permitted to total depths of 3,000 and 3,100 ft, respectively. ONGD will use the depleted Flora and Bruer Pools for gas storage.

DRILLING CONTINUES AT WILLAMETTE VALLEY WILDCAT
Operations continue at Damon Petroleum Corporation's Staffer Farms 35-1, located in sec. 35, T. 4 S., R. 1 W., Marion County. Because of mechanical difficulties, the operator decided to plug and abandon the 335-ft casing string, skid the rig approximately 30 ft to the north, and commence a new well, where drilling is presently underway.

EPA PREPARES REPORT ON OILFIELD WASTE
The Resource Conservation and Recovery Act requires the Environmental Protection Agency (EPA) to study wastes from oil, gas, and geothermal operations. The final report by EPA is to be finished by August 31, 1987, to be followed by new regulations. An interim Technical Report has been prepared for public review.

The report outlines drilling techniques and describes EPA's proposed method for collecting and analyzing data to address aspects of drilling waste disposal. The public comment period has ended, but questions and perhaps late comments can be registered with Bob Hall of the EPA, phone (202) 475-7415.

Stinchfield elected DOGAMI Governing Board Chair
At its November 24, 1986, meeting in Portland, the Governing Board of the Oregon Department of Geology and Mineral Industries (DOGAMI) elected Allen P. Stinchfield of North Bend to serve as new Chair of the Board. Stinchfield, who has served on the Governing Board since July 1, 1980, replaces previous Chair Donald A. Haagensen of Portland.

DOGAMI to celebrate fiftieth birthday
On March 1, 1937, legislation creating the Oregon Department of Geology and Mineral Industries (DOGAMI) was passed. During the fifty years between 1937 and 1987, the State of Oregon has changed, as has the science of geology. We of DOGAMI are grateful to the citizens of Oregon for having allowed us to be a part of both processes.

During this, our fiftieth anniversary year, we will share with you some brief remembrances of the busy and exciting years of the past. But more importantly, we will continue to give you new information about Oregon's geology and related topics. Within its beauty and vastness, Oregon still has many relatively unexplored areas—places where the geology is still not known or understood. We thank you for your interest and support down through the years, and we urge you to join with us in the excitement of learning more about the geology of our wonderful state in the years to come.
Part A of this article is a slightly modified version of "Field Trip Stop 3, Sheaville Zeolite Deposit, Sheaville, Oregon," and Part B is a version of "Field Trip Stops 4 and 5, Rome Zeolite Deposit, Rome, Oregon," both of which originally appeared in Zeo-Trip '83, a publication of the International Committee on Natural Zeolites that was used as a guide for the organization's field trip held from July 7 to 10, 1983. The 72-page book, which was edited by F.A. Mumpton, State University College, Brockport, New York, and prepared by R.A. Sheppard, A.I. Gude, 3rd, and F.A. Mumpton, also contains trip logs to the Durkee zeolite deposit (reprinted in the November 1986 issue of Oregon Geology); the Castle Creek zeolite deposit in Oreana, Idaho; the Lovelock zeolite deposit in Lovelock, Nevada; and the Tahoe-Truckee water reclamation plant in Truckee, California. In addition, there is a section on the discovery and commercial uses of the zeolite deposits described in the book. Copies of Zeo-Trip '83 may be purchased prepaid for $12 from the International Committee on Natural Zeolites, c/o Department of Earth Sciences, SUNY, College at Brockport, Brockport, New York 14420. Permission to reprint the Oregon trip stops in Oregon Geology is gratefully acknowledged.

—Editor

PART A. SHEAVILLE ZEOLITE DEPOSIT, SHEAVILLE, OREGON (FIELD TRIP STOP 3 IN ZEO-TRIP '83)

INTRODUCTION

The Sheaville deposit is located near Sheaville, Malheur County, Oregon, about 72 km southwest of Boise, Idaho. The Sheaville field trip stop (shown as field trip Stop 3 on Figure 1) is to several small prospect pits, about 300 meters (m) east of U.S. Highway 95 and about 4 kilometers (km) north of Sheaville in the N\(^{10} \) W\(^{4\circ} \) sec. 1, T. 28 S., R. 46 E. (Figures 1 and 2). This southeastern part of Oregon is in the Owyhee physiographic province, a moderately dissected surface about 600-1800 m above sea level. Upper Cenozoic volcanic and sedimentary rocks underlie most of the region.

Clinoptilolite and associated authigenic minerals at the Sheaville stop occur in a Miocene sequence of fluviatile and lacustrine rocks known as the Sucker Creek Formation of Kittleman and others (1965). Kittleman and others (1967) reported that the Sucker Creek Formation in the Sheaville area unconformably overlies rhyolitic, latitic, and basaltic volcanic rocks of Miocene age and is unconformably overlain by Miocene and Pliocene rhyolitic and basaltic rocks.

Clinoptilolite in silicic tuffs of the Sheaville area was first recognized by R.H. Olson and F.A. Mumpton in 1958 during an exploration program for zeolites by Union Carbide Corporation. The Norton Company has actively prospected and drilled the zeolite deposits at the field trip stop since the early 1960's, but the company has produced only a small tonnage of zeolitic tuff. Since the late 1970's, clinoptilolite-rich tuff has, however, been mined from the Sucker Creek Formation at other nearby localities. Several thousand tons of clinoptilolite-rich tuff has been mined by Occidental Minerals Corporation about 1 km east of this stop and by Teague Mineral Products about 13 km north of this stop. The materials from both localities have reportedly been used chiefly in agricultural applications. In spite of the commercial interest in the clinoptilolite at the Sheaville deposit, published information on the mineralogy, chemistry, and physical properties of the zeolitic tuff is meager. Kittleman and others (1965) described clinoptilolite and associated authigenic silicate minerals in altered tuffaceous rocks as part of a regional study of the Sucker Creek Formation. More recently, Shedd and others (1982) published a scanning electron micrograph (SEM) of clinoptilolite-rich tuff from the Sheaville deposit.

LITHOLOGY AND DEPOSATIONAL ENVIRONMENTS OF THE SUCKER CREEK FORMATION

The Sucker Creek Formation is about 500 m thick and consists mainly of tuff, volcanic sandstone, arkosic sandstone, conglomerate, and carbonaceous volcanic shale. The formation is extensively exposed in the northeastern part of Malheur County, Oregon (Kittleman and others, 1967) and in the northwestern part of Owyhee County, Idaho (Ekren and others, 1981). In Malheur County, the formation also locally includes flows of basalt and a rhyolitic ash-flow tuff. Much of the tuffaceous material in the sedimentary rocks of the formation is altered to smectite, clinoptilolite, and opal C-T, but fresh glass is preserved locally. Those parts of the formation that are zeolitic or silicified are commonly ledge formers, whereas those parts that are rich in clay minerals or relatively fresh glass are slope formers. In addition to vitric material or altered vitric material, the volcaniclastic rocks commonly contain trace to minor
amounts of pyrogenic quartz, sodic plagioclase, and biotite. Much of the volcaniclastic material in the formation was probably reworked from ash-fall deposits. Although detailed stratigraphic and sedimentologic studies of the Sucker Creek Formation have not been conducted, Kittelman and others (1965) suggested that the formation is chiefly the result of fluvial deposition and only subordinate lacustrine deposition.

LITHOLOGY AND MINERALOGY OF THE SHEAVILLE ZEOLITE DEPOSIT AT THIS STOP

Clinoptilolite at the Sheaville zeolite deposit occurs in a thick tuff in the upper part of the Sucker Creek Formation. This locality is on the western limb of a northward-trending anticline, and the tuff dips about 15° northwestward. The tuff is cut by numerous faults of slight displacement. Brown, siliceous, carbonaceous shale underlies the zeolitic tuff and contains abundant well-preserved plant fossils.

The zeolitic tuff is yellowish gray to light gray, thin to thick bedded, moderately resistant, and about 18 m thick (Figure 3). It breaks with a hackly or subconchoidal fracture, and brown iron oxides coat the joint surfaces. Some beds show contorted laminations, and others, more rarely, show ripple marks. Thin lenses of carbonized plant debris are locally common. Although unaltered glass was not recognized in the zeolitic tuff at this locality, the original vitroclastic texture is well preserved. Irregular, green or dark-gray zones in the tuff are hard and siliceous.

X-ray diffraction (XRD) patterns of bulk samples of the tuff at this stop indicate that clinoptilolite generally makes up 70 percent or more of the tuff. The other authigenic constituents are opal C-T and smectite. A chemical analysis of the clinoptilolite-rich tuff is given in Table 1 and indicates that the clinoptilolite is a potassic variety. SEM's of the clinoptilolite-rich tuff (Figure 4) show the excellent preservation of the morphology of the original glass shards by the finely crystalline clinoptilolite. Figure 5 shows that the clinoptilolite occurs as plates and blades, commonly 2-10 micrometers (μm) long. This SEM is not representative of the entire sample, however, because most fields of view show the clinoptilolite as an aggregate of anhedral particles.
ZEOLITE GENESIS

No published studies exist concerning the genesis of clinoptilolite and associated authigenic silicate minerals in the tuffs at the Sheaville zeolite deposit or anywhere in the Sucker Creek Formation. The zeolitic tuff originally consisted of silicic volcanic glass (Table 1) that was deposited in a fresh-water environment. Clinoptilolite, smectite, and opal C-T undoubtedly formed during diagenesis by reaction of the silicic glass with interstitial water. The apparent fresh-water depositional environment would probably not have provided connate interstitial water having characteristics favorable for alteration of the glass. Thus, the interstitial water necessary for the diagenetic alteration probably was flowing or percolating ground water that originated as meteoric water. In such open hydrologic systems, the ground water becomes chemically modified by hydrolysis and solution of the vitric material, and zeolitization can then proceed (Hay and Sheppard, 1977).

Additional data are needed with regard to the alteration pattern in the Sucker Creek Formation. Directly at this stop, the vitric material of the tuff seems completely altered. About 1 km north of the stop in the highway cuts and topographically lower than the stop, the same tuff is chiefly unaltered, gray glass. Also, about 1 km east of the stop and at about the same elevation, a tuff stratigraphically lower than that at this stop is completely altered to clinoptilolite, smectite, and opal C-T. At the type section for the Sucker Creek Formation, which is about 32 km north of this stop, Kittleman and others (1965) described both fresh and altered parts of the formation. A regional investigation, including subsurface information, is necessary before the zeolitization of tuffaceous rocks in the Sucker Creek Formation is understood.

Table 1. Chemical analyses of vitric tuff and clinoptilolite-rich tuff from the Sucker Creek Formation, near Sheaville, Oregon.

<table>
<thead>
<tr>
<th>Component</th>
<th>Vitric tuff</th>
<th>Clinoptilolite-rich tuff</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>69.1</td>
<td>65.1</td>
</tr>
<tr>
<td>K₂O</td>
<td>4.76</td>
<td>4.76</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>11.7</td>
<td>11.4</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.31</td>
<td>0.39</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.32</td>
<td>2.64</td>
</tr>
<tr>
<td>MgO</td>
<td>0.27</td>
<td>0.26</td>
</tr>
<tr>
<td>CaO</td>
<td>1.00</td>
<td>1.01</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.30</td>
<td>1.71</td>
</tr>
<tr>
<td>Total</td>
<td>99.40</td>
<td>98.94</td>
</tr>
</tbody>
</table>

1X-ray spectrographic analyses of untreated samples by J. S. Whelberg, Horstel, J. Beeler, K. Stewart, and J. Haggart.

2Vitric tuff collected in roadway of U.S. Highway 95, about 0.8 km north of field trip stop 3. Sample consists of about 90% vitric material and 10% clinoptilolite, opal C-T and smectite.

3Clinoptilolite-rich tuff collected at field trip stop 3. Except for a trace of smectite, the sample consists of clinoptilolite.

Highly determined by loss on ignition at 1000°C.

PART B. ROME ZEOLITE DEPOSIT, ROME, OREGON (FIELD TRIP STOPS 4 AND 5 IN ZEO-TRIP '83)

INTRODUCTION

The Rome zeolite deposit is located near Rome, Malheur County, Oregon, about 140 km southwest of Boise, Idaho. This southeastern part of Oregon is also in the Owyhee Upland physiographic province. Neogene and Quaternary volcanic and sedimentary rocks are the principal rocks that crop out in the province. The zeolites and associated authigenic minerals occur in a Miocene sequence of alluvial and lacustrine volcanlastic rocks known informally as the Rome beds (Figure 6). Walker and Repenning (1966) mapped the Rome beds during their geologic reconnaissance of the Jordan Valley quadrangle. The nearly flat-lying Rome beds unconformably overlie other Miocene sedimentary and volcanic rocks and are locally unconformably overlain by basalt and sedimentary rocks of Pliocene and Quaternary age.

Although the Rome beds were briefly described by J.C. Russell as early as 1903, zeolites were not recognized until the late 1950's. During this period and in the 1960's, several companies, including Kennedy Minerals Company (Eberly, 1964), Norton Company (Regis and Sand, 1966; Sand and Regis, 1967), Shell Development Company (Studer, 1967), and Union Carbide Corporation, conducted exploration programs for zeolites in the Rome beds. Both Anaconda Minerals Company (Santini and LeBaron, 1982) and Occidental Minerals Company actively prospected and drilled the Rome deposit in the late 1970's, and at least two other companies prospected the zeolitic beds for fluorite in the 1970's. In spite of all the interest and activity concerning the Rome zeolite deposit since the 1950's, only a minor tonnage of zeolite, chiefly mordenite-rich ore, has been produced. A considerable amount of low-grade, erionite-rich tuff containing substantial unaltered ash was quarried from the area for dimension stone prior to 1960.

Published studies on the distribution and genesis of zeolites and associated authigenic minerals in the volcaniclastic rocks of the Rome beds include those of Sheppard and Gude (1966, 1974), Wolf and Ellison (1971), Campion (1979), and Santini and LeBaron (1982). These studies concentrated mainly on that part of the Rome beds between the Owyhee River and Crooked Creek and chiefly north of U.S. Highway 95 (Figure 6). Both field trip stops at the Rome zeolite deposit are in the same general area and are shown as field trip stops 4 and 5 in Figure 6.
at conglomerate, sands tone, siltstone, and minor mudstone, members of the standing north-south, of about the basin. The upper, fine-grained unit of the Rome beds and is well exposed in the Rome Cliffs southwest of the Owyhee River, about 5 km northwest of the hamlet of Rome. The upper marker tuff is in the upper part of the unit. Fine-grained member of the Rome beds and crops out along Crooked Creek and several tributaries that join Crooked Creek from the east (see Figure 6). The upper marker tuff is in the same unit as the marker tuff of Sheppard and Gude (1969), the upper marker tuff of Campion (1979), and the zeolitic tuff of Santini and LeBaron (1982).

LITHOLOGY AND MINERALOGY OF THE LOWER AND UPPER MARKER TUFS AND ASSOCIATED ROCKS IN THE ROME BEDS

The two field trip stops at the Rome deposit (shown as stops 4 and 5 in Figure 6) are at thick, conspicuous zeolitic tufts that herein are termed the lower marker tuff and the upper marker tuff. The lower marker tuff is in the upper part of the lower, coarse-grained unit of the Rome beds and is well exposed in the Rome Cliffs southwest of the Owyhee River, about 5 km northwest of the hamlet of Rome. The upper marker tuff is in the upper part of the unit. Fine-grained member of the Rome beds and crops out along Crooked Creek and several tributaries that join Crooked Creek from the east (see Figure 6). The upper marker tuff is in the same unit as the marker tuff of Sheppard and Gude (1969), the upper marker tuff of Campion (1979), and the zeolitic tuff of Santini and LeBaron (1982).

FIRST STOP AT THE ROME BEDS (STOP 4 IN ZEO-TRIP '83): LOWER MARKER TUFS

The lower marker tuff and underlying rocks are easily examined at this stop (Stop 4), which is located on the west side of a small gulch in the NW¼ NW¼ sec 22, T. 31 S., R. 41 E. About 40 m of the lower, coarse-grained member of the Rome beds is well exposed at this locality (Figure 7). The lower marker tuff caps small knobs on the ridge west of the gulch, and the underlying grayish-green to grayish-brown sequence consists mainly of sandstone and conglomerate, with minor mudstone, siltstone, and tuff. The conglomerate is lenticular and consists chiefly of pebbles and cobbles of dark-colored chert and volcanic rocks. Pebbles of zeolitic tuff are also locally present in the conglomerate. The mineralogy of the lower marker tuff and underlying rocks is given in Table 2. In addition to detrital constituents, the volcaniclastic sandstone contains authigenic clay minerals, clinoptilolite, and most commonly, erionite.

At this locality, the lower marker tuff is about 6 m thick, but elsewhere it is only about 3 m thick. The lower marker tuff is light yellowish green but weathers brown to orange. The tuff is chieffly massive but is locally platy in the upper part (Figure 8). The base of the tuff is uneven, and cross-bedded tuffaceous sandstone or conglomerate locally occupies the basal part of the tuff. Saline-mineral molds occur locally in the upper part of the tuff. Although unaltered glass shards have not been recognized in this particular tuff unit at this locality, the relict vitroclastic texture is obvious. On the hilltop about 0.4 km east of this locality, the lower marker tuff has been quarried for local building stone and contains some unaltered glass.

The mineralogy of bulk samples of the lower marker tuff collected at this site is given in Table 2. Erionite is the principal authigenic constituent, but minor (10-20 percent) clay minerals, phillipite, and chabazite occur locally with the erionite. SEM's of the lower marker tuff show that the erionite occurs as needles, rods, and clusters of acicular crystals that are generally 5-20 µm in length to the deposition of the Pliocene and younger rocks overlying it. The lower, coarse-grained unit of the Rome beds consists of channel-form, tabular and sheetlike deposits of pebble conglomerate, coarse-grained sandstone, sandy mudstone, and minor mudstone. According to Campion (1979), these rocks were deposited in proximal braided stream and alluvial fan environments. Basinward, coeval deposits of the lower, coarse-grained unit are chiefly sandstone and mudstone that represent deposition in distal braided stream, floodplain, mudflat, beach, and offshore ephemeral lacustrine environments.

The upper, fine-grained unit of the Rome beds represents a late phase of deposition in the basin. It consists chiefly of mudstone and tuff but includes minor sandstone, chert, and limestone that are laterally extensive, unlike the rocks of the underlying coarse-grained unit. The upper, fine-grained unit of the Rome beds was probably deposited in a perennial lake.

Figure 6. Generalized geologic map of the Rome, Oregon, area, modified from the reconnaissance map of Walker and Repenning (1966), showing the field trip stops (Stops 4 and 5 in Zeo-Trip '83) at the Rome zeolite deposit discussed in Part B of this paper.

Figure 7. Erionite-rich lower marker tuff (right of 1.8-m-tall standing person) and underlying rocks of lower, coarse-grained member of the Rome beds, at the first trip stop described in Part B, which discusses the deposits at Rome, Oregon.
Figure 8. Erionite-rich lower marker tuff at the first field trip stop (Stop 4 in Figure 6) at Rome, Oregon, showing the upper platy part of the unit.

(Figures 9 and 10). The erionite rods commonly display a hexagonal cross-section. Chabazite occurs as rhombohedra, generally 3-10 μm in size. Thin fibers or needles of erionite have commonly grown on the surfaces of the chabazite (Figure 11), attesting to the younger age of the erionite. The paragenetic relationships as determined by scanning electron microscopy are, from early to late, smectite, chabazite, and then erionite. Neither the morphology nor the paragenetic relationship of the associated phillipsite was determined in the lower marker tuff.

A thin (0-20 centimeter [cm]) gray tuff is locally present beneath the lower marker tuff at this stop. This gray tuff consists mainly of authigenic potassium feldspar with minor to trace amounts of authigenic clay minerals and clinoptyllite. The presence and, especially, the abundance of authigenic potassium feldspar are unusual for volcaniclastic rocks of the lower, coarse-grained member of the Rome beds.

SECOND STOP AT THE ROME BEDS (STOP 5 IN ZEO-TRIP '83): UPPER MARKER TUFF

The upper marker tuff and underlying rocks of the upper, fine-grained member of the Rome beds crop out just north of U.S. Highway 95, about 0.9 km east of Crooked Creek in the SW 1/4 NW 1/4 sec. 5, T. 32 S., R. 41 E. About 20 m of the upper, fine-grained member, including the upper marker tuff, is exposed at this stop (Figure 12). The upper marker tuff represents the top of the Rome beds at this locality, but drilling farther north of the highway by Anaconda Minerals Company (Sanini and LeBaron, 1982) indicated that as much as 18 m of mudstone locally overlie the upper marker tuff. Grayish-brown mudstone and siltstone of Pliocene age unconformably overlie the upper marker bed at this stop, and basalt unconformably overlies the brown sediments. West of Crooked Creek,
the basalt rests on a part of the Rome beds that is stratigraphically lower than the upper marker tuff. The mudstone beneath the upper marker tuff is gray to grayish green and is commonly concealed by a punky “popcorn” coating formed by weathering of expandable clay minerals in the mudstone. Thin beds of tuff, chert, and ostracod limestone occur in the lower part of the upper, fine-grained member of the Rome beds. A distinctive chert, known as Magadi-type chert (Sheppard and Gude, 1974), crops out 7-8 m beneath the upper marker bed at this stop. Nodules of this chert that show characteristic surface reticulation (Figure 13) are appropriately called snakeskin agates by rockhounds and lapidaries.

The zeolitic upper marker bed forms a conspicuous ledge and is probably the most distinctive unit in the Rome beds. This marker tuff consists of three subunits that total 6-7 m in thickness. At this locality, the upper part of the tuff was eroded prior to deposition of the overlying Pliocene sediments. From drilling north of the highway, Santini and LeBaron (1982) suggested that the original thickness of the upper marker tuff was as much as 13 m. A resistant orange subunit near the middle of the marker tuff separates the predominantly light-gray tuff into lower and upper subunits (Figure 12). Both gray subunits break with a blocky to conchoidal fracture and contain abundant crystal molds of gaylussite(?). A thin bed of greenish-gray, vuggy tuff occurs locally in the upper third of the lower gray subunit. The orange subunit is about 1 m thick and consists of a thin lower bed and a thicker upper bed (Figure 14). Both beds break with a hackly or irregular fracture and have contorted laminations in their basal parts.

The mineralogy (Table 3) of the upper marker tuff and underlying rocks of the upper, fine-grained member of the Rome beds at this stop was determined by study of XRD patterns of bulk samples. The mudstone consists mainly of authigenic constituents that formed from an originally high content of vitric material. Potassium feldspar and clay minerals predominate, but quartz, clinoptilolite, and erionite are locally obvious. Even the fluorite and some, at least, of the calcite in the mudstone are authigenic.

The upper marker tuff consists chiefly of authigenic zeolites, clay minerals, quartz, potassium feldspar, and locally minor fluorite, calcite, and opal C-T. The tuff originally consisted mainly of silicic glass shards and minor crystal fragments. Relict vitroclastotic texture is well preserved in some parts of the tuff but is vague or absent in other parts. Unaltered glass was not recognized at this particular locality, but abundant unaltered glass occurs in parts of the upper marker tuff about 2.2 km south of this stop.

The zeolite mineralogy of the upper marker tuff (Table 3), though variable, shows a certain consistency with the subunits described above. Mordenite is the principal zeolite in the lower and upper gray subunits and is locally associated with minor clinop-
Table 3. Mineralogical composition of the upper marker tuff and associated rocks at the second stop (Step 5 in Zeo-Trip '83) at the Rome, Oregon, zeolite deposit.

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Position 1</th>
<th>X-ray diffraction analysis²</th>
<th>(in parts of ten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuff, upper gray</td>
<td>6.25</td>
<td>- 4</td>
<td>1</td>
</tr>
<tr>
<td>Tuff, upper gray</td>
<td>5.44</td>
<td>- 9</td>
<td>tr</td>
</tr>
<tr>
<td>Tuff, upper gray</td>
<td>5.77</td>
<td>- 1</td>
<td>tr</td>
</tr>
<tr>
<td>Tuff, orange</td>
<td>5.84</td>
<td>- 3</td>
<td>1</td>
</tr>
<tr>
<td>Tuff, orange</td>
<td>5.87</td>
<td>- 7</td>
<td>2</td>
</tr>
<tr>
<td>Tuff, orange</td>
<td>5.87</td>
<td>- 10</td>
<td>3</td>
</tr>
<tr>
<td>Tuff, orange</td>
<td>5.95</td>
<td>- 1</td>
<td>3</td>
</tr>
<tr>
<td>Tuff, orange</td>
<td>5.61</td>
<td>- 10</td>
<td>3</td>
</tr>
<tr>
<td>Tuff, orange</td>
<td>5.38</td>
<td>- 9</td>
<td>-</td>
</tr>
<tr>
<td>Tuff, orange</td>
<td>3.33</td>
<td>- 5</td>
<td>9</td>
</tr>
<tr>
<td>Tuff, lower gray</td>
<td>5.10</td>
<td>- 5</td>
<td>-</td>
</tr>
<tr>
<td>Tuff, lower gray</td>
<td>1.98</td>
<td>- 7</td>
<td>-</td>
</tr>
<tr>
<td>Tuff, lower gray</td>
<td>2.29</td>
<td>- 8</td>
<td>-</td>
</tr>
<tr>
<td>Tuff, lower gray</td>
<td>5.14</td>
<td>- 10</td>
<td>-</td>
</tr>
<tr>
<td>Vuggy tuff</td>
<td>5.13</td>
<td>tr</td>
<td>4</td>
</tr>
<tr>
<td>Vuggy tuff</td>
<td>5.14</td>
<td>tr</td>
<td>-</td>
</tr>
<tr>
<td>Tuff, lower gray</td>
<td>3.15</td>
<td>tr</td>
<td>-</td>
</tr>
<tr>
<td>Tuff, lower gray</td>
<td>0.32</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Tuff, lower gray</td>
<td>0.22</td>
<td>tr</td>
<td>2</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.20</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.39</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.79</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Rutile</td>
<td>1.50</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.20</td>
<td>tr</td>
<td>4</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.33</td>
<td>tr</td>
<td>2</td>
</tr>
<tr>
<td>Chert</td>
<td>0.76</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rutile</td>
<td>0.71</td>
<td>tr</td>
<td>2</td>
</tr>
</tbody>
</table>

[Note: Quantitative data such as counts or percentages of minerals are not provided.]

As determined by scanning electron microscopy, the zeolite deposit at the Rome, Oregon, zeolite deposit, showing a large clinoptilolite crystal resting on prismatic phillipsite.

Fluorite seems to be restricted to the upper, fine-grained member of the tuff beds (Table 3) and is especially abundant in parts of the upper marker tuff (Sheppard and Gude, 1969). The fluorite occurs as submicrometer-size, nearly spherical grains of diagenetic origin. The mordenite, lower gray subunit of the upper marker tuff commonly has the highest fluorite content, and as much as 16 percent fluorite has been determined. The orange subunit consistently contains little or no fluorite. Similar fluorite has recently been reported from alkaline, saline-lake deposits elsewhere in the western United States (Sheppard and Gude, 1980) and in eastern Africa (Sutherland and Eugster, 1976).

GENESIS OF THE ZEOITES

The zeolites and associated silicate minerals in tuffs and other volcaniclastic sediments of the Rome beds formed during diagenesis by reaction of silicic glass with pore waters of various compositions. Campion (1979) showed that three diagenetic facies or zones can be delineated from the margin to the central part of the basin in which the Rome beds were deposited. A marginal, fresh-water facies grades basinward to a zeolitic facies and then to a potassium feldspar facies in the central part of the basin. Campion's stratigraphic and sedimentological studies suggest that the basin center during the deposition of the upper, fine-grained member of the Rome beds was located about midway between the second stop at the Rome beds and the Owyhee River to the north (Figure 6). This general distribution of diagenetic facies is similar to the distribution of depositional facies from the marginal, alluvial environments to a basinward, lacustrine environment. The paragenesis of authigenic silicate minerals of glass → smectite → zeolite → potassium feldspar and the distribution of diagenetic facies in the Rome beds are similar to that recognized in tuffs of Pleistocene Lake Tecopa, near Shoshone, California (Sheppard and Gude, 1968).

If the original composition of all of the volcanic glass in the Rome beds was close to that shown in Table 4, the formation of zeolites and associated minerals was controlled mainly by the composition of the pore water. The pore water trapped with the rhyolitic volcanic glass during sedimentation probably varied from dilute and nearly neutral pH in alluvial environments to saline, alkaline brine having a pH of 9 or greater in the central lacustrine environment. Hydration and solution of the vitric material during diagenesis would have caused even further chemical modifications of the pore water.

Figure 15. SEM of the upper gray subunit of the upper marker tuff at the Rome, Oregon, zeolite deposit, showing a mass of intergrown, threadlike fibers of mordenite.

Figure 16. SEM of the basal part of the orange subunit of the upper marker tuff at the Rome, Oregon, zeolite deposit, showing a large clinoptilolite crystal resting on prismatic phillipsite.
Both high pH and high salinity of the pore water favor rapid solution of silicic vitric material (Surdam and Sheppard, 1978). Surdam and Sheppard (1978) indicated that the important chemical properties of the pore water during the reaction of glass to zeolites are as follows: cation ratios, Si:Al ratio, and the activity of H₂O. These properties are, of course, affected by changes in the salinity and/or alkalinity. The pH, in particular, influences the Si:Al ratio of the pore water and, thus, the Si:Al ratio of the zeolite that crystallizes from the pore water.

Campion (1979) showed that the authigenic potassium feldspar in the Rome beds formed from precursor zeolites as well as from clay minerals and detrital plagioclase. Although kinetic factors may be important for the zeolite to potassium feldspar reaction, high pH and high salinity of the pore water certainly favor the reaction.

Table 4. Chemical composition of rhyolitic glass from the Rome beds.

<table>
<thead>
<tr>
<th>Component</th>
<th>SiO₂</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>Fe₂O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>72.44</td>
<td>0.10</td>
<td>0.46</td>
<td>5.08</td>
<td>6.67</td>
</tr>
</tbody>
</table>

Electron microprobe analysis from Campion (1979). Shards were separated from a tuff located in the Sn1/4, SEL/4, Sec. 8, T32S, R4E (about 2.2 km south of Stop 5).

Position announcement: Supervisory Mined Land Reclamation Specialist

The State of Oregon/Department of Geology and Mineral Industries invites applications for the position of Supervisory Mined Land Reclamation Specialist. The position requires a minimum of a bachelor's degree involving major study in environmental or natural science, engineering, or other closely related fields and five years of mine reclamation experience or five years of closely related experience. Duties will include frequent travel to mine sites and the supervision of three individuals. Current salary range is $2,404-$3,068 per month.

Please send current resume including references from former supervisors by March 10, 1987, to Director, Department of Geology and Mineral Industries, 910 State Office Building, Portland, Oregon 97201. Equal Opportunity Employer—Eligible for Public Financial Disclosure.

REFERENCES CITED

Keeping you up to date

The following titles are the latest publications of the Oregon Department of Geology and Mineral Industries. Descriptions of the publications will appear in the next issue of Oregon Geology:

Released 12-30-86: Geologic map of the northwest quarter of the Cape Junction quadrangle, Josephine County, Geological Map Series GMS-38.

Correction

In the October 1986 article on the Turner-Albright massive sulfide deposit (Oregon Geology, v. 48, no. 10, p. 117), the cobalt values in paragraph 2, line 17, should have read 0.05 percent cobalt.
AVAILABLE DEPARTMENT PUBLICATIONS

GEOLOGICAL MAP SERIES
- **GMS-4**: Oregon gravity maps, onshore and offshore. 1967
- **GMS-5**: Geologic map, Powers 15-minute quadrangle, Coos and Curry Counties. 1971
- **GMS-6**: Preliminary report on geology of part of Snake River canyon. 1974
- **GMS-8**: Complete Bouguer gravity anomaly map, central Cascade Mountain Range, Oregon. 1978
- **GMS-9**: Total-field aeromagnetic anomaly map, central Cascade Mountain Range, Oregon. 1978
- **GMS-10**: Low- to intermediate-temperature thermal springs and wells in Oregon. 1978
- **GMS-12**: Geologic and mineral resources map of the Mineral 15-minute quadrangle, Baker Co. 1978
- **GMS-13**: Geologic map, Huntington and part of Olds Ferry 15-min. quadrangles, Baker and Malheur Counties. 1979
- **GMS-14**: Index to published geologic mapping in Oregon, 1898-1979. 1981
- **GMS-15**: Four-air-gravity anomaly map, north Cascades, Oregon. 1981
- **GMS-16**: Free-air gravity anomaly map and complete Bouguer gravity anomaly map, south Cascades, Oregon. 1981
- **GMS-17**: Total-field aeromagnetic anomaly map, south Cascades, Oregon. 1981
- **GMS-18**: Geology of Rickreall, Oregon. 1981
- **GMS-19**: Geology and gold deposits map, Benton 7 1/2-minute quadrangle, Baker County. 1982
- **GMS-20**: Map showing geology and geothermal resources, southern half, Burns 15-min. quad, Harney County. 1982
- **GMS-21**: Geology and geothermal resources map, Vale East 7 1/2-minute quadrangle, Malheur County. 1982
- **GMS-22**: Geology and mineral resources map, Mount Ireland (map published by USGS). 1983
- **GMS-23**: Geologic map, Sheridan 7 1/2-minute quadrangle, Polk/Yamhill Counties. 1982
- **GMS-24**: Geologic map, Grand Ronde 7 1/2-minute quadrangle, Polk County. 1982
- **GMS-25**: Geologic and mineral resources map, Waldo 7 1/2-minute quadrangle, Grant County. 1982
- **GMS-26**: Residual gravity maps, northern, central, and southern Oregon Cascades. 1982
- **GMS-27**: Geologic and neotectonic evaluation of north-central Oregon: The Dalles 1 x 2 square. 1982
- **GMS-28**: Geology and gold deposits map, Polk 7 1/2-minute quadrangle, Baker/Grant Counties. 1983
- **GMS-29**: Geology and gold deposits map, NE 1/4 Bates 15-minute quadrangle, Baker/Grant Counties. 1983
- **GMS-30**: Geologic map, SE 1/4 Pasko Peak 15-minute quadrangle, Curry/Josephine Counties. 1984
- **GMS-31**: Geology and gold deposits map, NW 1/4 Bates 15-minute quadrangle, Grant County. 1984
- **GMS-32**: Geologic map, Willamette gold tract, Clackamas/Marion Counties. 1984
- **GMS-33**: Geologic map, Scotts Mills 7 1/2-minute quadrangle, Clackamas/Marion Counties. 1984
- **GMS-34**: Geologic map, Stayton NE 7 1/2-minute quadrangle, Marion County. 1984
- **GMS-35**: Geologic and mineral resources map, Grant Co. 15-minute quadrangle. 1984
- **GMS-36**: Mineral resources map of Oregon. 1984
- **GMS-37**: Mineral resources map, offshore Oregon. 1985
- **GMS-38**: Geologic map, NW Cove Junction 15-minute quadrangle, Josephine County. 1986
- **GMS-39**: Geology, geology and mineral resources of Oregon (map published by NOAA). 1986
- **GMS-40**: Total-field aeromagnetic anomaly maps, Cascade Mountain Range, northern Oregon. 1985
- **GMS-42**: Geologic map, ocean floor off Oregon and adjacent continental margin, 1986

OTHER MAPS
- **Reconnaissance geologic map, Lebanon 15-minute quadrangle, Linn/Marion Counties. 1956**
- **Geologic map, Bend 30-minute quadrangle, and reconnaissance geologic map, central Oregon High Cascades. 1957**
- **Geologic map of Oregon west of 121st meridian (U.S. Geological Survey Map I-1325). 1961**
- **Landforms of Oregon (relief map, 17 x 12 in.). 1983**
- **Geothermal resources of Oregon (map published by NOAA). 1982**
- **Landsat mosaic map (published by EROS, NASA). 1988**
- **High Cascades. 1957**
- **Geologic map, ocean floor, continental margin and adjacent continental margin, north of Oregon. 1986**

BULLETINS
- **33. Bibliography of geology and mineral resources of Oregon (1st supplement, 1937-45). 1947**
- **35. Geology of the Dallas and Valsvetz 15-minute quadrangles, Polk County (map only). Revised 1964**
- **36. Papers on Foraminifera from the Tertiary (v. 2 [parts VI-VIII] only). 1949**
- **44. Bibliography of geology and mineral resources of Oregon (2nd supplement, 1946-50). 1953**
- **45. Ferruginous bauxite deposits, Salem Hills, Marion County. 1956**
- **61. Geology of northern Oregon. 1960**
- **65. Proceedings of the Andesite Conference. 1969**
- **71. Geology of selected lava tubes, Bend area, Deschutes County. 1971**
- **78. Bibliography of geology and mineral resources of Oregon (5th supplement, 1961-70). 1973**
- **81. Environmental geology of Lincoln County. 1973**
- **82. Geologic hazards of Bull Run Watershed, Multnomah and Clackamas Counties. 1974**
- **83. Eocene stratigraphy of southwestern Oregon (map). 1974**
- **85. Environmental geology of coastal Lane County. 1974**
- **87. Environmental geology of western Coos and Douglas Counties. 1975**
- **90. Land use geology of western Curry County. 1976**
- **91. Geologic hazards of parts of northern Hood River, Wasco, and Sherman Counties. 1978**
- **92. Limestones in Oregon. A collection of reports from the Ore Bin, 1977.**
- **93. Geology, mineral resources, and rock material of Curry County. 1977**
- **94. Land use geology of central Jackson County. 1977**
- **95. North American orogenies (IGCP project). 1977**
- **96. Magma genesis. AGU Chapman Conference on Partial Melting. 1977**
- **98. Geologic hazards of eastern Benton County. 1979**
- **99. Geologic hazards of northwestern Clackamas County. 1979**
- **100. Geology and mineral resources of Josephine County. 1979**
- **101. Geologic field trips in western Oregon and southwestern Washington. 1980**

SHORT PAPERS
- **21. Lightweight aggregate industry in Oregon. 1951**
- **24. The Almeda Mine, Josephine County. 1967**
- **27. Petrography of Rattlesnake Formation at type area, central Oregon. 1976**
- **28. Light weight aggregate industry in Oregon. 1979**
- **29. Petrography of Rattlesnake Formation at type area, central Oregon. 1976**
- **27. Rock material resources of Benton County. 1978**
<table>
<thead>
<tr>
<th>AVAILABLE DEPARTMENT PUBLICATIONS (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISCELLANEOUS PAPERS</td>
</tr>
<tr>
<td>1. A description of some Oregon rocks and minerals, 1980</td>
</tr>
<tr>
<td>5. Oregon's gold placers, 1954</td>
</tr>
<tr>
<td>6. Available well records of oil and gas exploration in Oregon. Revised 1982</td>
</tr>
<tr>
<td>11. Collection of articles on meteorites (reprints from Ore Bin), 1968</td>
</tr>
<tr>
<td>15. Quick silver deposits in Oregon, 1971</td>
</tr>
<tr>
<td>20. Investigations of nickel in Oregon, 1978</td>
</tr>
<tr>
<td>SPECIAL PAPERS</td>
</tr>
<tr>
<td>1. Mission, goals, and programs of the Oregon Department of Geology and Mineral Industries, 1978</td>
</tr>
<tr>
<td>2. Field geology, SW Broken Top quadrangle, 1978</td>
</tr>
<tr>
<td>3. Rock material resources, Clackamas, Columbia, Multnomah, and Washington Counties, 1978</td>
</tr>
<tr>
<td>5. Analysis and forecasts of the demand for rock materials in Oregon, 1979</td>
</tr>
<tr>
<td>6. Geology of La Grande area, 1980</td>
</tr>
<tr>
<td>7. Pluvial Fort Rock Lake, Lake County, 1979</td>
</tr>
<tr>
<td>8. Geology and geochemistry of the Mount Hood volcano, 1980</td>
</tr>
<tr>
<td>9. Geology of the Breitenbush Hot Springs quadrangle, 1980</td>
</tr>
<tr>
<td>10. Tectonic rotation of the Oregon Western Cascades, 1980</td>
</tr>
<tr>
<td>12. Geologic lines of the northern part of the Cascade Range, Oregon, 1980</td>
</tr>
<tr>
<td>13. Faults and lineaments of the southern Cascades, Oregon, 1981</td>
</tr>
<tr>
<td>14. Geology and geothermal resources of the Mount Hood area, 1982</td>
</tr>
<tr>
<td>15. Geology and geothermal resources of the central Oregon Cascade Range, 1983</td>
</tr>
<tr>
<td>16. Index to the Ore Bin (1939-1978) and Oregon Geology (1979-1982), 1983</td>
</tr>
<tr>
<td>OIL AND GAS INVESTIGATIONS</td>
</tr>
<tr>
<td>3. Preliminary identifications of Foraminifera, General Petroleum Long Bell #1 well, 1973</td>
</tr>
<tr>
<td>4. Preliminary identifications of Foraminifera, E.M. Warren Coos County 1-7 well, 1973</td>
</tr>
<tr>
<td>5. Prospects for natural gas, upper Nehalem River Basin, 1976</td>
</tr>
<tr>
<td>6. Prospects for oil and gas, Coos Basin, 1980</td>
</tr>
<tr>
<td>7. Correlation of Cenozoic stratigraphic units of western Oregon and Washington, 1983</td>
</tr>
<tr>
<td>8. Subsurface stratigraphy of the Ochoco Basin, Oregon, 1984</td>
</tr>
<tr>
<td>11. Biostratigraphy of exploratory wells, western Coos, Douglas, and Lane Counties, 1984</td>
</tr>
<tr>
<td>12. Biostratigraphy of exploratory wells, northern Wallowa Basin, 1984</td>
</tr>
<tr>
<td>13. Biostratigraphy of exploratory wells, southern Wallowa Basin, 1983</td>
</tr>
<tr>
<td>14. Oil and gas investigation of the Astoria Basin, Clatsop and north Tillamook Counties, 1985</td>
</tr>
<tr>
<td>MISCELLANEOUS PUBLICATIONS</td>
</tr>
<tr>
<td>Mining claims (State laws governing quartz and placer claims)</td>
</tr>
<tr>
<td>Back issues of Ore Bin</td>
</tr>
<tr>
<td>Back issues of Oregon Geology</td>
</tr>
</tbody>
</table>

Separate price lists for open-file reports, geothermal energy studies, tour guides, recreational gold mining information, and non-Departmental maps and reports will be mailed upon request.

OREGON GEOLOGY

910 State Office Building, 1400 SW Fifth Avenue, Portland, Oregon 97201

Second Class Matter

POSTMASTER: Form 3579 requested

PUBLICATIONS ORDER

Fill in appropriate blanks and send sheet to Department.

Minimum mail order $1.00. All sales are final. Publications are sent postpaid. Payment must accompany orders of less than $50.00. Foreign orders: Please remit in U.S. dollars.

NAME ________________________________

ADDRESS ________________________________ ZIP ______

Amount enclosed $ ______

OREGON GEOLOGY

 Renewal ______ New Subscription ______ Gift ______

 1 Year ($6.00) ______ 3 Years ($15.00) ______

NAME ________________________________

ADDRESS ________________________________ ZIP ______

If gift: From ________________________________