OIL AND GAS NEWS

Mist Gas Field report revised

The Mist Gas Field Report published by the Oregon Department of Geology and Mineral Industries (DOGAMI) has been revised and is now available with all 1989 activity and changes included. This report includes the Mist Gas Field Map, which was revised to include the seven wells ARCO and the six wells DY Oil drilled during the year. The location, status, and depth of all wells are indicated on the map. The report also includes production figures for the wells at Mist from the initial production in 1979 through the end of 1989. Included are well names, revenue generated, pressures, annual and cumulative production, and other data. The Mist Gas Field Report, Open-File Report 0-90-1, sells for $7.

Rulemaking continues

Draft rules to implement House Bill 2089 (1989 Legislature) are now available for review. These are to provide for ground-water protection and surface reclamation when shallow exploratory holes, such as seismic shot holes, are drilled by the oil and gas industry in Oregon. Administrative rules relating to oil and gas exploration and development in Oregon are also being reviewed at this time. These were last revised in November 1985, and revisions to these rules may be proposed. Public hearings for them and for House Bill 2089 rules will be scheduled for some time during February or March. Contact Dan Wermiil for details.

New maps and reports released by DOGAMI

Geologic maps for southeastern Oregon

Two new geologic maps released by the Oregon Department of Geology and Mineral Industries (DOGAMI) describe the geology and mineral potential of the Double Mountain and Grassy Mountain areas in southeastern Oregon. These areas are currently the focus of intensive exploration for gold but show potential also for other mineral resources, such as feldspathic sands, limestone, bentonite clay, diatomaceous earth, perlite, natural gas, and geothermal energy.

DOGAMI geologists M.L. Ferns and L. Ranip produced both DOGAMI map GMS-57, Geology and Mineral Resources Map of the Grassy Mountain Quadrangle, Malheur County, Oregon, and DOGAMI map GMS-58, Geology and Mineral Resources Map of the Double Mountain Quadrangle, Malheur County, Oregon.

Both of the maps are two-color maps at a scale of 1:24,000. They show rock units and geologic structure on a topographic base and identify the locations of samples collected for analysis, fossils, and, in the case of GMS-58, gas-exploration wells. The price of each map is $4.

The two publications were prepared in cooperation with the U.S. Geological Survey (USGS) and were partially funded by the COGEO Map program of the USGS.

The Grassy Mountain 75/minute Quadrangle covers approximately 48 mi² south of Vale, Oregon. The map of the quadrangle, GMS-57, consists of two plates: The first plate contains the geologic map, two geologic cross sections, and a discussion of the mineral resources of the quadrangle; the second plate contains two tables of sample analyses.

The Double Mountain 7½-minute Quadrangle is the immediately adjacent quadrangle to the north. The map covering this quadrangle, GMS-58, consists of one plate that includes the geologic map, analytical tables, two geologic cross sections, and a discussion of the mineral-resource potential of the quadrangle.

(Continued on page 36, Reports)
Maps: the Earth on canvas

by Evelyn M. VandenDolder, Arizona Geological Survey

This paper first appeared in the Winter 1987 issue of Fieldnotes (v. 17, no. 4), published by the Arizona Bureau of Geology and Mineral Technology. Since that date, the name of the publication has been changed to Arizona Geology, and the name of the state agency has been changed to the Arizona Geological Survey, located at 845 N. Park Avenue, #100, Tucson, Arizona 85719, phone (602) 882-4795. The content of the original paper was modified to include information about Oregon instead of Arizona. It was also updated and expanded slightly by Glenn Ireland, State of Oregon Resident Cartographer, whose assistance is gratefully acknowledged. —Editors

INTRODUCTION

Amelia Earhart, the plucky aviator whose 1937 round-the-world flight ended in disaster, may have been the victim of a mapmaker’s mistake. Earhart’s flight plan gave the wrong coordinates for Howland Island, the South Pacific sandbar that was only 2 miles (mi) long and that she and navigator Fred Noonan were trying to reach when they vanished. The faulty flight plan, which was based on inaccurate government charts, put Howland Island 7 mi to the northwest of its actual location. Earhart’s flight plan listed the coordinates for the tiny island as latitude (lat) 0°49’ N., longitude (long) 176°43’ W., whereas the actual coordinates are lat 0°48’ N., long 176°38’ W. (Barker, 1986). Some investigators who searched for the possible causes for Earhart’s disappearance believed that she and Noonan were on course and would have reached Howland Island if they had been given the correct coordinates. The first chart to list accurate coordinates was published four to five months after Earhart and Noonan vanished. It is therefore likely that the mapping mistake was discovered during the search for Earhart.

Earhart’s story illustrates the importance of accuracy in maps and translates a seemingly inconsequential error on paper into the language of human tragedy. Accurate, detailed maps have enabled humans to chart not only their courses across vast oceans but also the progress of their civilizations. The following article gives an abbreviated history of cartography, the art and the science of mapmaking: explains scale, coordinate systems, and projections; illustrates how remote-sensing techniques aid mapmaking; describes various specialized maps and how they are used; and lists several sources of maps of Oregon.

HISTORY OF MAPMAKING

Maps are as old as human culture. The detail and accuracy of mapmaking have, in turn, both reflected and enhanced the advancement of civilization. From prehistoric hunters, who probably drew crude maps in the dirt, to Renaissance navigators, who explored and mapped the oceans and continents, to today’s cartographers, who use satellite images, mapmaking has had a long and exciting history.

As human culture evolved from a nomadic, hunting existence to a more settled, agrarian lifestyle, land ownership and determination of property lines became more important. The oldest known map, dated about 2500 B.C., is a small clay tablet that shows a man’s estate nestled amid mountains and rivers in Mesopotamia (Chamberlain, 1950; Raisz, 1962). The Egyptians measured and mapped their countryside for property taxes to fuel their thriving civilization. These early peoples believed that Earth was flat, and their maps reflected this concept.

Ancient Greek culture emphasized logic, reason, and scientific thought, nurturing interest in the world as well as the mind. The Greeks conceived the idea of a spherical Earth. About 400 B.C., Aristotle offered evidence as proof: the shape of Earth’s shadow on the Moon during an eclipse (Chamberlain, 1950). Eratosthenes (276-194 B.C.), mathematician and philosopher, estimated the size of Earth based on observations of shadows and a knowledge of geometry. Despite his crude methods (by modern standards), his estimate of Earth’s circumference of 28,000 mi was only 12 percent larger than its actual size (about 24,900 mi; Chamberlain, 1950). His map, which showed parts of Europe, Africa, and Asia, was the first to include parallels and meridians. The early Greeks also defined the poles, the equator, and tropics and developed several projections that are still used today.

Medieval cartographers, seeking a more simplistic view of the world to mirror their religious beliefs, chose more symmetrical, “divinely perfect” outlines for Europe, Africa, and Asia rather than the more accurate, irregular coastlines of earlier maps. In the late 13th century, however, the use of the compass burgeoned, as did the production of highly accurate maps known as “portolan charts,” which were used with minor modifications for more than three centuries. Portolan charts were based on systematic compass surveys. Most charts included 16 or 32 compass roses with radiating rhumb lines (lines that show the compass directions), a design sometimes used on current maps as decoration (Raisz, 1962).

The discovery of the Americas effected a renaissance in cartography. As the number of trade routes increased, so did the need for more detailed maps. New discoveries from explorations modified humans’ view of the world. The first map to include America, published in 1500, showed it as part of Asia (Raisz, 1962). It was not until after Magellan’s voyage from 1519 to 1522 that maps accurately depicted the immensity of the Pacific Ocean. The invention of the engraving and printing processes during this period enabled wider and more timely distribution of new maps. The highest quality maps produced during the late 16th and 17th centuries were compiled by Dutch and Flemish mapmaking masters, such as Mercator, Ortelius, and Janszoon (Raisz, 1962).

The 18th century, known as the Age of Reason, brought a concomitant age of map accuracy. Instruments to measure latitude and longitude became more sophisticated. Triangulation and topographic mapping of France during this time, sponsored by the Cassini family, spurred interest in similar national surveys during the following centuries (Raisz, 1962). Cartographers of the 19th century also diversified and specialized their products,
creating geologic, economic, and transportation maps, among others. With the founding of the U.S. Geological Survey (USGS) in 1879, the systematic mapping of the United States became an organized effort.

In our own century, the advent of remote-sensing techniques such as aerial photography and satellite imagery has enabled the cartographers to create a "bird’s-eye" view of the world and its features. Digital scanning systems and laser plotters have dramatically increased the accuracy and detail of modern maps (Figure 1). Technological advances and increasingly sophisticated instruments continue to enhance the quality and accuracy of human attempts at sketching the face of Earth.

SCALE

Scale defines the relationship between a distance shown on a map and the corresponding actual distance on the ground. Scale may be expressed in three ways (Zumberge and Rutford, 1983):

1. As a graph, line, or bar divided into units that represent ground distances.
2. In words that state the relationship between map distance and ground distance; for example, "1 inch (in.) equals 1 mile (mi)" means that 1 in. on the map corresponds to 1 mi on the ground.
3. As a fraction or fixed ratio between linear efforts in measurements on the map (the numerator) and corresponding distances on the ground (the denominator). For example, a scale of \(\frac{1}{63,360}\) (or 1:63,360) means that one unit of measurement on the map (for example, 1 in.) represents 63,360 of the same units on the ground. In this example, 1 in. on the map corresponds to 1 mi on the ground (1 in. [map] = 63,360 in. [ground] = 5,280 feet [ft] [ground] = 1 mi [ground]). The first number (map distance) given in the ratio is always 1; the second number (ground distance) varies, but the larger the second number, the smaller the scale.

Many areas have been mapped several times, but at different scales. One should choose a map with a scale appropriate for its intended use. For instance, a large-scale map shows more detail but less area; therefore, an urban planner might choose a 1:600-scale map that shows power and water lines, house lots, streets, etc. A small-scale map, on the other hand, shows less detail but encompasses a wider area. A geologist who is interested in the general geologic history of Oregon might choose a 1:500,000-scale geologic map of the state that shows major rock formations and geologic features. An exploration geologist looking for gold, however, would prefer a larger scale, such as 1:24,000, that would enable him or her to see more precisely the location of specific rock units or structures on the ground.

Large-scale topographic maps (see section titled “Types of Maps”) of 1:24,000 show natural and manmade features such as important buildings, campgrounds, caves, ski lifts, watermills, bridges, and private roads. Intermediate-scale topographic maps scaled 1:50,000 and 1:100,000 usually omit these

Figure 2. Magnetic declination, also known as compass variation, is the angle between true (geographic) north and the direction in which the magnetic compass points (magnetic north). Its value at the beginning of 1980 is indicated in this chart by isogonic lines, or lines of equal declination. Values along the top of the chart refer to dashed lines. Values along the sides and bottom of the chart refer to solid lines. Solid lines indicate the number of degrees between magnetic north and true north, with magnetic north east of true north at locations that are west of the 0° line (labeled on the bottom of the chart) and west of true north for locations that are east of the 0° line. Dashed lines indicate change in minutes per year in the direction of magnetic north, with change to more eastward direction east of 0° line (labeled on the top of the chart) and change to more westward direction west of 0° line. From Fabiano and Peddie, 1980.
features. Small-scale topographic maps of scale 1:250,000 and smaller (i.e., scales with a larger denominator) show only major features such as national and State parks, Indian reservations, airports, major roads, and railroads (U.S. Geological Survey, 1981b).

COORDINATE SYSTEMS

"Finding oneself" is not easy in this world, whether it be in the psychological or geographical sphere. Ever since the first map was compiled, cartographers have searched for an accurate system to locate points on the globe. Some map users, such as navigators, need a means to track their progress across oceans; others, such as land owners and government officials, need a method to establish property lines; still others, such as geologists, need a way to identify localities of outcrops, minerals, etc., so that future researchers can find and study them.

In the United States, three coordinate systems are generally used: (1) geographic coordinates (latitude and longitude); (2) Public Land Survey (PLS), also called the "Land Office Grid" or "township and range"; and (3) Universal Transverse Mercator (UTM) grid. A fourth system—State Plane Coordinates—is used extensively by state and local governments, in large-scale mapping, and in engineering and property surveys. Each of these systems is explained in the sections that follow.

LATITUDE AND LONGITUDE

Cartographers have arbitrarily divided the Earth's surface into a system of reference coordinates that are termed "latitude" and "longitude" and are based on a series of imaginary lines called "parallels" and "meridians," respectively, drawn on the surface.

If one imagines Earth as a globe with an axis through the North and South Poles, the meridians of longitude would be circles around the globe that pass through both poles. A meridian is labeled according to its distance, measured in degrees, east or west of the zero meridian, which was established in 1884 by international agreement as the meridian that passes through Greenwich, England, near London. Before this time, many countries used meridians that passed through their own capital cities as the 0° meridian for their own maps (Chamberlain, 1950). The zero meridian is also called the "Greenwich" or "prime" meridian. Because the globe encompasses 360°, the 180° west meridian (long 180° W.) and the 180° east meridian (long 180° E.) represent the same imaginary line known as the "International Date Line." Although this line mostly follows the 180° meridian, there is some variation to prevent separating land masses, such as the Aleutian Islands, into time zones with different days.

Midway between the North and South Poles, the Equator, an imaginary line that circles Earth, divides it in half into the Northern and Southern Hemispheres. Imaginary lines drawn concentrically around the poles and parallel to the Equator are called "parallels of latitude." They are labeled according to their distances, measured in degrees, north and south of the Equator. The Equator is 0° latitude (lat 0°), the North Pole is 90° north latitude (lat 90° N.), and the South Pole is 90° south latitude (lat 90° S.). Parallels of latitude, as their name states, always parallel each other; meridians of longitude, however, converge at the poles.

Each degree used to measure latitude and longitude may be divided for more precise location into 60 minutes, represented by the minute symbol ('). Each minute, in turn, may be subdivided into 60 seconds, identified by the second symbol (") . For example, the coordinates of the Portland office of the Oregon Department of Geology and Mineral Industries are lat 45°30'50" N., long 122°40'43" W.

Because the circumference of the Earth is about 24,900 statute miles (21,600 nautical miles), each degree of latitude measures about 69.2 statute miles (60 nautical mi), each minute measures about 1.15 statute miles (1 nautical mi), and each second measures about 1 ft (Chamberlain, 1950). Distances represented by degrees of longitude vary depending upon the latitude. At both the North and South Poles, for example, one could walk through 360° of longitude by walking in a circle around the pole. At the Equator, such a walk would be considerable undertaking, indeed! At the latitude of Portland, one second of latitude equals 71 ft. One second of longitude equals the same as at the Equator—101 ft.

Time zones are related to meridians because of Earth's rotation. A full rotation of Earth on its axis (360° of longitude) takes 24 hours, 15° of longitude takes one hour, and 1" takes four minutes.

The latitude-and-longitude system of coordinates is used worldwide. Similar systems have been extrapolated for use in space. Of the three systems discussed in this article, this is the only one that can be determined astronomically and without a map (Merrill, 1986a). Meridians always run in a true north-south direction. True north, however, is not the same as magnetic north (the direction that the needle in a magnetic compass points), except on the meridian that passes through the magnetic North Pole (Zumberge and Rutford, 1983). This is because of polar wandering; the geomagnetic axis does not coincide with Earth's axis of rotation. The magnetic North Pole is actually at about lat 70° N., which is about 1,250 mi from the geographic (true) North Pole (Stahler, 1981). The angle in any given location between true north and magnetic north is called the "magnetic" or "compass declination." Declination records have been kept in Paris and London since about 1600 (Stahler, 1981). Local declination and its annual variation are usually shown in the lower margin of most maps published by the USGS. The correction for annual change, however, will be approximate if the map is more than 20 years old (Compton, 1962). Declination can also be determined from an isogonic chart (Figure 2) or by setting a compass on a level surface and sighting on Polaris, the North Star (Compton, 1962).

In Portland, the magnetic declination is 19.6° E., based on the International Geomagnetic Reference Field (Sha1 Levi, Geophysics Group, College of Oceanography, Oregon State University, personal communication, 1989).

PUBLIC LAND SURVEY SYSTEM

The Public Land Survey System was instituted in 1785 by the Continental Congress from the recommendation of Thomas Jefferson. The system was instituted to get away from the metes and bounds surveys along creeks, stone walls, and ridges that characterized the surveys of the 13 colonies. The Public Land Survey System is the legal method of describing land in all states except the original colonies and Texas. A Spanish system is used in Texas.

Township and range designations are used to locate property boundaries and describe land areas. The basic unit, called a "section," is a square-shaped area 1 mi long and 1 mi wide. One standard section contains 640 acres. A standard township is 6 mi on each side and contains 36 sections, or 23,040 acres. When the sections and townships were surveyed, each section was intended to encompass an exact square mile of land. Surveying errors, however, created irregularities in the shapes of many sections and townships in the United States (Zumberge and Rutford, 1983).

Township-range divisions are based on a grid of perpendicular lines. Township lines are numbered every 6 mi north and south from an initial point. Range lines are numbered every 6 mi east and west from the initial point. Instead of the Equator and zero meridian, reference lines for township designations are specific east/west and north/south lines called the "base line" and "principal meridian," respectively (Zumberge and Rutford, 1983). A township is located by giving its position north or south of the base line and east or west of the principal meridian. The notation "T. 4 S., R. 2 W." indicates township four south, range two west. Many base lines and principal meridians are used in the United States, so township and range coordinates are never very large. In Oregon and Washington, the townships are measured from the Willamette Base Line (about lat 45°31'11" N.) and Willamette Principal Meridian (about long 122°40'43" W.), which originate at the Willamette Stone in the West Hills of Portland (see USGS Portland, Ore.-
except for zone each of which encompasses lettered C to long rill, 1986a; Snyder, 1987). These zones are numbered 1 to 180° W. Property and land exchanges are often described in these terms.

Because the township, range, and section coordinate system is a flat grid made of perpendicular lines in 1-mi segments, there has to be something built into the grid to make it fit over the curved surface of the earth. Correction meridians and parallels are established every four townships (24 mi) from the initial point. These Guide Meridians and Standard Parallels adjust the alignment of the north-south lines to correct for the convergence of the lines toward the pole. Imagine the north-south lines to be readjusted from 5.96 to 6 mi apart, and another 24-mi block is surveyed north from the standard parallel.

UTM GRID

The Universal Transverse Mercator (UTM) grid was adopted by the U.S. Army in 1947 to assign rectangular coordinates on military maps of the world (Snyder, 1987). Although the original UTM grid used only numericals as coordinates, the U.S. Army simplified it by substituting letters for several numbers. In military parlance, the UTM is called the “Military Grid System.” In scientific jargon, it is simply called the “UTM” (U.S. Department of the Army, 1969, 1983; Hines, 1986; Merrill, 1986b).

The UTM divides Earth from west to east into 60 numbered zones, each of which encompasses 6° of longitude. Beginning at the 180° meridian (the International Date Line), zones are numbered 1 to 60 consecutively from west to east (Merrill, 1986a). For example, zone 1 extends from long 180° W. to long 174° W. From south to north, the UTM divides Earth into 20 lettered subzones, each of which encompasses 8° of latitude, except for zone X, which extends 12° (Merrill, 1986a; Snyder, 1987). These zones are lettered C to X consecutively from south to north. (The letters I and O are not used to avoid confusing them with numbers.) Numbered and lettered grid zones extend only from lat 80° S. to lat 84° N. The polar regions beyond these parallels are assigned coordinates on the Universal Polar Stereographic (UPS) grid (Snyder, 1987), which will not be discussed in this article. The State of Oregon lies in UTM grid zones 10T and 11T, which cover a rectangular area from long 126° W. to 114° W. and from lat 40° N. to 48° N.

Each grid zone may be further divided into grid squares that measure 100,000 meters (m) (109,361 yards [yd]) on a side; these are given double-letter designations. In turn, grid squares may be subdivided with finer numerical grids that enable one to locate an area 10 m by 10 m (11 yd by 11 yd) on most current maps (Merrill, 1986a).

The USGS began adding UTM grid lines to its 7½-minute quadrangle maps in 1957. Most 15-minute quadrangle maps do not include them. State base maps, new maps, and reprinted quadrangle maps, however, include UTM grid lines or tick marks (Merrill, 1986a). The UTM grid is significant to digital cartography in that it is widely used to encode map data for eventual computer handling.

STATE PLANE COORDINATE SYSTEM

The National Geodetic Survey, in coordination with each state legislature, has designed and mandated a projection system that will “fit” each state with a minimum of distortion. Property and engineering surveys are required by state law to show the State Plane Coordinates of the monuments and control points on the plats and maps. Most states are too large for one projection to cover the entire state without exceeding the distortion lines. When a state is divided into two or
more State Plane Coordinate projection zones, the boundaries of the zones are divided along county boundaries. This is so that a county survey will always be in only one zone. The State Plane Coordinate system is designed so that there can be some overlap from one zone to another without exceeding the accuracy standards of the zone in which most of the survey is taking place.

Oregon’s State Plane Coordinate System is based on the Lambert Projection with two zones, a North Zone and a South Zone. This projection was chosen because Oregon is wider in an east-west direction and the Lambert Projection “fits” better in an east-west direction with minimum distortion. Idaho has a system based on the Transverse Mercator Projection because the state is longer in a north-south direction. Idaho has three zones: East, Central, and West.

USGS 7½-minute quadrangle maps show the State Plane Coordinate System ticks every 10,000 ft in black along the edges of the quadrangle. Ticks with complete numbers are located on the southwest and northeast corners of USGS maps. Other tick marks along the edge are unnumbered. Quadrangles with more than one state will identify each of the state’s plane coordinate zone ticks.

In an unending quest for perfect accuracy, scientists continue to develop new location systems or modify old ones and debate the usefulness, precision, and accuracy of each (Hines, 1986; Merrill, 1986a,b, 1987; Nelson, 1987).

MAP PROJECTIONS

Earth is a sphere, actually a spheroid because it bulges slightly at the Equator and flattens at the poles. The most accurate map of Earth is a globe because, on it, scale is constant, and geographical relationships are true. Since a globe is cumbersome and impractical on a large scale, cartographers have developed ways to convert the three-dimensional spherical image to a two-dimensional flat image. A map projection is a systematic method of transferring the grid system of parallels and meridians from globe to paper using mathematical calculations to alleviate distortion (Chamberlain, 1950).

As the word “projection” implies, areas of the globe are projected onto another surface and then transferred to paper. This intermediate surface can be a cylinder, cone, or plane. The shape of the surface, the line of contact or point of tangency between the surface and the globe, and the point on Earth that is chosen as the center or starting point determine the type of the projection (Figures 4 and 5).

There is no best projection to portray the world. A cartographer determines which projection to use based on the characteristics deemed most important, such as area, shape, scale, or direction. Hundreds of projections have been developed throughout the history of cartography, but only a few dozen are used to produce most of today’s maps. Some of the more common or useful projections are briefly described below. Snyder (1987) has written an excellent book on projections that includes both historical and descriptive text for the layperson and mathematical calculations for the professional cartographer.

CYLINDERS

Perhaps the best known and most easily drawn projection was developed by the Flemish cartographer Gerardus Mercator (1512-1594). The Mercator projection is drawn by wrapping a cylinder around the globe, with both surfaces touching along the Equator; meridians are then projected from the center of the globe (Snyder, 1987; Figures 4a and 5a). Mercator developed this projection to aid navigation. This is the only projection on which all points are shown at their true compass courses from one another; if a ship’s direction remains constant with respect to north, the sailing route between two points is a straight line. Since 1910, this has been the standard projection used on the nautical charts of the U.S. Coast and Geodetic Survey, now called the National Ocean Service (Snyder, 1987). Areas in the polar regions, however, are greatly distorted with this projection. Greenland appears to be larger than South America, yet it is only one-eighth the size of the continent (Snyder, 1987; Figure 5a).

Cylindrical projections are used mostly for maps of the world or narrow areas along the Equator, a meridian, or an oblique circle. Conic projections, on the other hand, are used to map areas in the middle latitudes that extend in mostly an east-west direction.

A regular conic projection is drawn by setting a cone on top of the globe, with the cone apex and globe axis aligned. The cone and globe touch along a specific latitude (standard parallel). Meridians are drawn from the apex to points at which corresponding meridians on the globe touch along a parallel instead of along the Equator (Figures 4b and 5b). Areas along the central meridian remain true to scale, no matter how far north or south of the Equator they are. This projection is used for areas in which the north-south dimension is greater than the east-west dimension. It is also the base for the USGS 1:250,000-scale maps (1° x 2° quadrangles) and some 7½- and 15-minute quadrangles (Snyder, 1987). In the Oblique Mercator projection, the cylinder touches the globe along a circle path specifically chosen to alleviate distortion in the mapped areas (Figures 4c and 5c). The USGS has further modified this to obtain the Space Oblique Mercator projection, which is used for continuous mapping of Landsat satellite images (Snyder, 1987).

CONES

Cylindrical projections are used mostly for maps of the world or narrow areas along the Equator, a meridian, or an oblique circle. Conic projections, on the other hand, are used to map areas in the middle latitudes that extend in mostly an east-west direction.

A regular conic projection is drawn by setting a cone on top of the globe, with the cone apex and globe axis aligned. The cone and globe touch along a specific latitude (standard parallel). Meridians are drawn from the apex to points at which corresponding meridians on the globe touch along a parallel instead of along the Equator (Figures 4b and 5b). Areas along the central meridian remain true to scale, no matter how far north or south of the Equator they are. This projection is used for areas in which the north-south dimension is greater than the east-west dimension. It is also the base for the USGS 1:250,000-scale maps (1° x 2° quadrangles) and some 7½- and 15-minute quadrangles (Snyder, 1987). In the Oblique Mercator projection, the cylinder touches the globe along a circle path specifically chosen to alleviate distortion in the mapped areas (Figures 4c and 5c). The USGS has further modified this to obtain the Space Oblique Mercator projection, which is used for continuous mapping of Landsat satellite images (Snyder, 1987).

Figure 4. Projection of the globe onto three surfaces: (a) regular cylindrical (surfaces touch along Equator); (b) transverse cylindrical (surfaces touch along meridian); (c) oblique cylindrical (surfaces touch along circle path); (d) regular conic (surfaces touch along parallel); (e) planar or azimuthal, polar aspect (surfaces touch at pole); (f) planar or azimuthal, oblique aspect (surfaces touch at point between pole and Equator); and (g) planar or azimuthal, equatorial aspect (surfaces touch at Equator). From Snyder, 1987.
the globe intersect the standard parallel (Figure 4d). The cone is then cut along one meridian and unrolled (Snyder, 1987).

The simplest conic projection is the Equidistant or Simple Conic, which shows true scale along all meridians and one or two standard parallels (Figure 5d). It is the basic form developed about 150 A.D. by the Greek astronomer and geographer Claudius Ptolemy. This projection is the one most often used in atlases for maps of small countries (Snyder, 1987).

Variations of the simple conic projection include the Polyconic, which is mathematically based on an infinite number of cones tangent to an infinite number of parallels (Snyder, 1987).

This projection was developed by Swiss-born Ferdinand Rudolph Hassler (1770-1843), who became first superintendent of the U.S. Coast Survey, precursor of the U.S. Coast and Geodetic Survey. Because of Hassler’s promotion, the Polyconic projection was used on large-scale maps of the United States, such as USGS 7 1/2- and 15-minute topographic quadrangles, until the 1950’s. Quadrangle maps drawn with the Polyconic projection at the same scale and based on the same central meridian will fit exactly from north to south or east to west; however, they cannot be mosaicked in both directions without distortion (Snyder, 1987).

The Lambert Conformal Conic projection was developed by the Alsatian mathematician and cartographer Johann Heinrich Lambert (1728-1777). On this projection, local shapes, scale, and angles remain accurate, but area does not. It is used for mapping large countries and smaller regions with an east-west orientation such as the United States, North Carolina, Long Island, and Oregon (Snyder, 1987). It has been used on USGS 7 1/2-minute quadrangle maps of Oregon prepared since the 1960’s and is also the projection used for the USGS 1:500,000-scale State base-map series.

PLACES

Azimuthal (or zenithal) projections are drawn on a plane that touches the globe at one of the poles, the Equator, or some point between these. The center of the projection determines its aspect: polar, equatorial, or oblique (Figures 4e,f,g; 5e,f,g). The direction or azimuth from the center to every other point of the map is shown accurately. Because this projection has one standard point or center, it is used mostly to portray circular regions such as Antarctica, rather than areas that extend mostly in one direction (Snyder, 1987).

On polar aspects, meridians are shown as straight lines that radiate at true angles from the center (pole), like the spokes on a wheel; the latitude lines appear as concentric circles around the pole (Figure 5e).

Except for the polar aspect, azimuthal projections are more difficult to draw than the cylindrical or conic versions. Azimuthal projections, however, portray Earth’s roundness and unity, features that are less apparent in the other two projections.

The Stereographic projection is the most widely used azimuthal projection. Hipparchus, the Greek astronomer and the father of trigonometry (2nd century B.C.), is credited with its invention, although it was probably known already to the Egyptians. The Stereographic projection was used only for maps of the heavens until the early 1500’s (Snyder, 1987). This projection can depict only one hemisphere at a time. Its polar aspect is used extensively for maps of Antarctica and the polar regions of other planets and satellites (Figure 5e).

The Orthographic projection is probably the best known of the azimuthal projections. Because the perspective is from an infinite distance, maps drawn with this projection appear as they would from outer space, with a three-dimensional effect (Figure 5f). Its development, too, is credited to Hipparchus, who used it for astronomical calculations. The Orthographic projection became popular during World War II, as world leaders tried to emphasize the global aspects of the conflict (Snyder, 1987). It is seldom used in atlases today, except for pictorial views of the globe, because only one hemisphere can be shown at one time, and distortion near the outer edges is severe.

The Azimuthal Equidistant projection shows distances and directions correctly from one point (point of tangency) on Earth’s surface and any other point on the map (Figure 5g). Maps based on this projection usually show less than one hemisphere. The Egyptians probably used the polar aspect for star charts. Navigators have used it to chart coastlines based on distances and directions obtained at sea. This projection is used today in maps of the polar regions and continents and in world maps for radio and seismic use. The polar aspect is also used as the emblem of the United Nations.

REMOTE SENSING

Before the invention of the airplane, mapping was a down-to-earth profession based on observations made on land or sea. With the advent of aviation, cameras could record what only birds and balloonists had seen previously. Remote-sensing techniques, such as aerial photography and satellite imagery, are used by scientists, engineers, and cartographers to determine land features, to study seasonal changes in vegetation and wildlife habitats, and to evaluate damage caused by geologic hazards such as floods, landslides, and active volcanoes. Vegetational differences are reflected in the shades and patterns that appear in black-and-white aerial photographs. Heavy vegetation such as forests are medium to dark

Figure 5. Selected map projections:

(a) Mercator (regular cylindrical); (b) Transverse Mercator (transverse cylindrical); (c) Oblique Mercator (oblique cylindrical); (d) Simple Conic (regular conic); (e) Stereographic (planar or azimuthal, polar aspect); (f) Orthographic (planar or azimuthal, polar aspect); and (g) Azimuthal Equidistant (planar or azimuthal, equatorial aspect). From Snyder, 1987.
gray in color, whereas grasslands are light gray. Cultivated fields are usually rectangular in shape. Shades also give clues to soil and rock type. Clays that retain moisture, for example, appear darker than dry sand. Because the type of vegetation commonly reflects the bedrock on which it grows, vegetational variations can also be used to determine rock type (Zumberge and Rutford, 1983).

Photointerpretation can be enhanced by viewing aerial photos stereoscopically. Two photos of the same area taken from slightly different positions can be overlapped through the use of a stereoscope to show the relief of the land. Each eye sees only one of the photos, but the brain combines the two images to produce a three-dimensional view (Zumberge and Rutford, 1983).

False-color images are created by satellites that record infrared radiation from Earth. The measured differences are computer-enhanced to produce a picture in which the colors are not true to life; for example, green vegetation may show as red, and water may appear black (Zumberge and Rutford, 1983). Color variations result from differences in vegetation, soil, moisture, and rock types. False-color images created by Earth Resource Technology Satellites (Landsat) are byproducts of the U.S. space program. Each Landsat satellite circles the globe 14 times a day, scans a particular area of Earth more than 40 times a year, and creates images, each of which covers 115 mi² (U.S. Geological Survey, 1981a). The frequency and amount of coverage make satellite imagery especially useful in studying Earth’s surface. Satellite images, however, cannot show the detail that aerial photographs can because they are taken farther from Earth’s surface and thus, at a smaller scale. Because the satellites pass over the same point every nine days, comparative studies can be conducted on such topics as vegetation or human habitation.

TYPES OF MAPS

A map is a graphic representation of part of Earth’s surface. Some types, such as road maps, show the distribution of features and manmade structures in two-dimensional form. Other types, such as topographic maps, illustrate the three-dimensional nature of Earth’s features on a two-dimensional surface. Because geologic structures are three-dimensional, the latter type of map is more useful to geologists.

There are basically four types of maps: planimetric, topographic, thematic, and photomaps (U.S. Geological Survey, undated[b]). Planimetric maps show natural features, such as rivers and lakes, and cultural features, such as roads, railroads, towns, and land boundaries, but do not show relief features, such as hills or valleys. The latter may be labeled, however. A land map is a planimetric map. Topographic maps show both features and surface elevations. Photomaps, such as the ortho photoquads and orthophotomaps, are derived from aerial photographs that have been corrected to eliminate distortions due to perspective or camera tilt. These maps are related to standard coordinate systems but show photographic details that do not usually appear on conventional maps. Thematic maps show information about a specific theme or topic such as geology, rainfall, population, soil (pedology), or vegetation. Thematic maps include geologic maps, which show the position, structure, and composition of rock units and surficial materials and the nature of boundaries between rock types, such as faults and depositional contacts; geophysical maps, which show variations in the geophysical properties, such as gravity or magnetism (Figure 2); hydrologic maps, which show information about water resources; pedologic maps, which show distribution and character of soils; and land-use maps, which indicate the areas that are used for agricultural, recreational, wilderness, urban, or other purposes (U.S. Geological Survey, undated[b]).

Because of their usefulness to the professional geologist and because they are often confused by the layperson, topographic and geologic maps are described in the following sections.

TOPOGRAPHIC MAPS

Every geologic process leaves a mark on Earth’s surface. Wind and water erosion, glaciation, and volcanism leave their respective signatures as characteristic landforms. Unlike other maps, a topographic map shows these three-dimensional imprints, as well as cultural features. Relief (mountains, hills, valleys, and plains), bodies of water (lakes, ponds, rivers, canals, and swamps) and cultural features (roads, railroads, towns, land boundaries, etc.) are depicted on topographic maps.

On a topographic map, relief is shown through the use of contour lines, imaginary lines on Earth’s surface that connect points of equal elevation above or below sea level (Figure 6a). A contour interval, the difference in elevation between two adjacent contour lines, is generally a constant value chosen according to the ground slope and map scale. Two contour intervals may be shown on a single map to show relief features more precisely. Contour intervals on different maps may range from 5 to 1,000 ft (Zumberge and Rutford, 1983). Widely spaced contours indicate flat areas or areas with a gentle slope, while closely spaced contours indicate steep terrain such as mountains or cliffs. When contour lines cross stream-filled valleys or canyons that are shown on a map, they bend upstream; the contour resembles the letter “V” with the apex pointing upstream (Zumberge and Rutford, 1983). Index contours, on which elevations are labeled, are usually every fifth contour line and are drawn with heavier lines than other contours. Spot elevations may be given for specific locations such as mountain summits, road intersections, or lakes. Bench marks indicate points at which the land elevations have been precisely determined by surveying techniques and are marked by brass plates that are permanently fixed in the ground. These can be found on the tops of remote mountains as well as on the sidewalks of major cities. Each bench mark is shown on a topographic map by the letters “BM,” followed by a cross and the measured elevation.

A shaded relief map is darkened to simulate the effect that sunlight and shadow would have on terrain. The pattern of light and dark accentuates the shape of physical features and creates a three-dimensional effect. Slope maps create this same effect through the use of different colors and color shades to indicate steepness and slope (U.S. Geological Survey, undated[b]).

A topographic map covers a specific quadrangle, an area that is outlined by parallels of latitude (the northern and southern boundaries of the map) and meridians of longitude (the eastern and western boundaries of the map). Standard quadrangles are bounded by 7½ minutes each of latitude and longitude (7½-minute quadrangle), by 15 minutes each of latitude and longitude (15-minute quadrangle), by 30 minutes of longitude and 60 minutes of latitude (30-by-60-minute quadrangle), or by 1° of latitude and 2° of longitude (1° quadrangle; Table 1). The USGS has been producing standard topographic maps for 7½- and 15-minute quadrangles in the United States since the 1880’s. Although the actual area shown on a quadrangle map is a trapezoid, the map appears to be rectangular because the meridians converge toward the pole by such a small amount for each map that the eye has trouble detecting the difference.

Government agencies and private industries use topographic maps as bases for more specialized maps, such as geologic, land-use, soil, and road maps. Specialized data are superimposed directly on the topographic base sheet. Topographic maps are also used by planning agencies to aid in selecting sites for highways, airports, industrial plants, pipelines, powerlines, communication facilities, and recreational areas (U.S. Geological Survey, 1983). These maps are especially important in assessing and managing natural resources. They can also serve as practical guides for any camping, hiking, fishing, or hunting trip.

GEologic Maps

Just as a person’s face may reflect his or her character, the face of Earth may reveal what lies beneath its surface. A geologic map shows how Earth would appear if materials, such as vegetation, were stripped away (U.S. Geological Survey, 1982). These maps use standard symbols, patterns, and colors to de-
pict the types and relative ages of rocks and surficial materials and the surface and subsurface associations or rock units (Figure 6b).

A geologic map is not easy to create. It requires countless hours of fieldwork, keen observation skills, an ability to think three-dimensionally, and at times, X-ray vision. The first step includes studying areas where rocks are visible and can be identified in outcrops, such as ledges, fault scarp, and streambanks, or in excavations, such as roadcuts, mines, and wells. In areas where the bedrock is covered, geologists may be able to infer the underlying rocks by studying surficial materials, vegetation, landforms, and regional structure. Techniques for determining age are unique to each rock type. The age of each rock or surficial unit is identified from fossils or bits of other rocks included within it, from radiometric dating, or from its position relative to other units. (Barring an episode of geologic upheaval, a sedimentary or volcanic rock unit is always younger than the one below it, a natural law that geologists call the "law of superposition.") Geologists also study aerial photographs and preexisting maps to fill in missing data and to corroborate field observations (U.S. Geological Survey, 1982).

The geologist records the locations, types, and ages of the rock units and surficial materials by using various colors or patterns on a topographic base map. Standard patterns have been adopted to distinguish among rock types. The basic rock units shown on a geologic map are called "formations." A formation is usually named after a geographic feature (mountain, canyon, town, etc.) near the area where the unit was first identified and/or described. Using special symbols, the geologist records other significant observations on the map such as faults, folds, contacts between rock units, and the strike and dip of formations (respectively, the direction of a horizontal line within a unit and the angle that the unit slopes in outcrop).

The reliability of a geologic map depends on the number of observations made in the field and the competence of the geologist. If there are few outcrops, little contrast between rock types, and a history of complicated geologic events, geologists can produce many plausible interpretations and make several credible geologic maps of the same area (U.S. Geological Survey, 1982).

Geologic maps can be used to locate mineral or energy deposits because specific rock types or structures (e.g., faults) are often associated with specific deposits. They can also be used to locate sources of ground water or construction materials (sand and gravel, flagstone, etc.), to determine the suitability of areas for agriculture or urban development, or to identify potential geological hazards. Geologic maps provide an enormous amount of information needed for deciphering Earth's long and complex geologic history.

Figure 6. Comparison of topographic (a) and geologic (b) maps drawn at the same scale for the same region, the Newberry caldera in central Oregon. Note contour lines in (a) that indicate topographic relief and patterns in (b) that symbolize rock types.

OREGON GEOLOGY, VOLUME 52, NUMBER 2, MARCH 1990
WHERE TO OBTAIN MAPS

(Single copies of a limited number of brochures describing Oregon maps and aerial photography are available at no cost from the Portland office of the Oregon Department of Geology and Mineral Industries [see address and phone number on the inside front cover]. Produced in 1988 by the Oregon Mapping Committee of the State Map Advisory Council, the brochure is entitled "Oregon: Maps and Aerial Photography Information Guide," and it is a comprehensive listing of State, Federal, regional, and local map- and aerial photography-producing agencies in Oregon. The guide provides complete information on where to obtain the full range of maps available in Oregon. Most of the information about Oregon maps and aerial photographs presented below is taken from this brochure; the rest of the information is from the author of the original paper.—Editor)

An excellent source of information for map users is the book Maps for America (Thompson, 1987), published as a special volume by the USGS. This book presents the story of maps and mapping with the aim to provide a basis for an understanding of map content. The richly illustrated book originally commemorated the Survey’s 100th anniversary in 1979 and is now available in its expanded, third edition from the Government Printing Office and its bookstores at a price of $25.

The Earth Science Information Center (ESIC) of the USGS provides a nationwide information service for cartographic data of the United States, including maps, charts, aerial photographs, satellite images, and map data in digital form obtained by more than 30 Federal agencies. For information on Oregon, contact either the headquarters (Earth Science Information Center, U.S. Geological Survey, 507 National Center, Reston, VA 22092, phone 1-800 USA MAPS) or the Western Branch Office (Western Mapping Center-ESIC, U.S. Geological Survey, Mail Stop 532, 345 Middlefield Road, Menlo Park, CA 94025, phone [415] 329-4309).

The USGS has placed on microfilm virtually all of the topographic maps of the United States that it has published since 1884. These are available from the ESIC offices. Printed versions of USGS maps of Oregon (topographic, geologic, land-use, etc.) may be obtained from the Western Distribution Branch, Box 25286, Federal Center, Bldg. 41, Denver, CO 80225, phone (303) 236-7477.

Aerial photographs and Landsat images may be obtained from the USGS ESIC Menlo Park, California, office or the USGS Earth Resources Observation System (EROS) Data Center. Contact User Services Section, EROS Data Center, Sioux Falls, SD 57198, phone (605) 594-6151.

Another source of aerial photos is the U.S. Department of Agriculture (USDA). The Agricultural Stabilization and Conservation Service (ASCS) maintains an extensive file of aerial photographs. For more information, contact: Aerial Photography Office, ASCS-USDA, 2222 West 23rd, South, Post Office Box 30010, Salt Lake City, UT 84130, phone (801) 524-5856. The Soil Conservation Service produces pedologic maps and soil-survey reports, which include aerial photos and descriptions of soils and management of soils within the survey area. In Oregon, contact the USDA Soil Conservation Service, Federal Building, 1220 SW Third Avenue, Portland, OR 97204, phone (503) 221-1794.

The USDA Forest Service prepares and distributes recreational, base, regional, and other specialized maps and survey data as well as aerial photos. For information, contact them at P.O. Box 3623, Portland, OR 97208, phone (503) 326-2877 (for recreation maps) and 326-4165 (for special map products).

The U.S. Bureau of Land Management (BLM) compiles and distributes maps that show land status, mineral status, Federal and State lands, and private properties. BLM also maintains land records and provides aerial photographs. For information, contact the Oregon State Office, 825 NE Multnomah St., P.O. Box 2965, Portland, OR 97208, phone (503) 231-6281 for maps and 231-6885 for photos.

The National Ocean Service provides aeronautical and nautical charts that are sold by authorized dealers. Catalogs are available upon request from the National Ocean Service, Pacific Marine Center N/MOPX4, 1801 Fairview Avenue East, Seattle, WA 98102, phone (206) 442-7657.

The Oregon Department of Forestry produces maps showing forest protection units and land management and orthophotomaps and township aerial photographs as well as high-altitude aerial photographs of portions of eastern and western Oregon and low-altitude aerial photographs of State Forest lands. For information, contact Graphic Services, 2600 State Street, Salem, OR 97310, phone (503) 378-2504.

The Oregon Department of Geology and Mineral Industries produces and sells geologic, mineral-resource, geologic-hazard, geothermal, geophysical, rock-resource, and regional oil and gas maps and also sells USGS topographic maps. For the Department's address and phone number, see the inside front cover of this magazine.

The Oregon Historical Society has over 10,000 historical maps of the Pacific Northwest covering exploration, topography, and social development. For information, contact Map Library, 1230 SW Park Avenue, Portland, OR 97205, phone (503) 222-1741. In addition, old maps may be examined in public and university libraries. They may also be obtained from the National Archives (Publication Sales Branch, National Archives, 8th and Pennsylvania Avenue NW, Washington, D.C. 20408) or from the Library of Congress (Geography and Map Division, Library of Congress, Washington, D.C. 20540).

The Oregon Department of Land Conservation and Development has numerous types of planning and land use maps for reference only. For information, contact them at 175 Court Street NE, Salem, OR 97371, phone (503) 373-0050.

The Oregon State Library has a collection of Federal, State, and private and local agency maps. It also maintains an office and a depository for U.S. government maps. These maps are for reference only. For information, contact them at the State Library Building, Salem, OR 97310, phone (503) 378-4368.

The University of Oregon has a large collection of maps from Federal, State, private and local agencies. The library is an ESIC affiliate office and is a depository for U.S. government maps. For information, contact the Map Library, 165 Condon Hall, Eugene, OR 97403, phone (503) 686-3651.

The Oregon Department of Revenue sells assessor’s tax maps as well as U.S. Public Land Survey plats and timber ownership and tax district maps. For information, contact the Cartographic Unit, 955 Center St., Salem, OR 97310, phone (503) 378-3381.

The Oregon Division of State Lands supplies public ownership maps. For information, contact them at 1600 State Street, Salem, OR 97310, phone (503) 378-3805.

The Oregon Department of Transportation produces planimetric maps that outline roads, distinguish road surfaces (e.g., paved vs. dirt), and show other cultural features. Contact the Distribution Unit, Transportation Building, Room 17, Salem, OR 97310, phone (503) 378-6255 or 378-6254.

The Oregon Water Resources Department produces and sells drainage basin, land use, groundwater, geology, and water-right maps.

Table 1. Map scales and corresponding areas on the ground. From U.S. Geological Survey, 1981b

<table>
<thead>
<tr>
<th>Scale</th>
<th>One inch on map represents</th>
<th>One centimeter on map represents</th>
<th>Standard quadrangle size (lat x long)</th>
<th>Quadrangle area (square miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:24,000</td>
<td>2000 feet</td>
<td>240 meters</td>
<td>7° 1/2 x 7° 1/2 minute</td>
<td>49 to 70</td>
</tr>
<tr>
<td>1:62,500</td>
<td>nearly 1 mile</td>
<td>625 meters</td>
<td>15 x 15 minute</td>
<td>197 to 282</td>
</tr>
<tr>
<td>1:250,000</td>
<td>nearly 4 miles</td>
<td>2½ kilometers</td>
<td>1° 2' or 1° 3'</td>
<td>4,580 to 8,669</td>
</tr>
<tr>
<td>1:1,000,000</td>
<td>nearly 16 miles</td>
<td>10 kilometers</td>
<td>4° 6' x 6'</td>
<td>73,340 to 102,750</td>
</tr>
</tbody>
</table>

* 1° x 3' is the standard size for quadrangle maps of Alaska.

The Table 1. Map scales and corresponding areas on the ground. From U.S. Geological Survey, 1981b includes the following map scales and their corresponding areas on the ground: 1:24,000, 1:62,500, 1:250,000, and 1:1,000,000. The table provides the area in square miles that each scale represents.
Earthquake hazard workshop announced

The fourth annual workshop of the National Earthquake Hazards Reduction Program will be entitled Earthquake Hazards in the Puget Sound and Portlad Areas and held April 17-19, 1990, at the Seattle Sheraton Hotel.

The Washington State Division of Geology and Earth Resources will conduct the workshop in cooperation with the U.S. Geological Survey and the Federal Emergency Management Agency. Topics will include the geologic and seismologic setting in western Washington and Oregon, site effects, lifelines, structural engineering with emphasis on building retrofit, and loss estimation. A field trip will let the participants inspect buildings undergoing retrofit in downtown Seattle.

A poster session is planned to present highly detailed information on any of the workshop's topics. To volunteer a poster or for more information, contact Timothy Walsh or Stephen P. Palmer at the Washington Division of Geology and Earth Resources, Mail Stop PY-12, Olympia, WA 98504, phone (206) 459-6372, FAX (206) 459-6380.

Washington Division of Geology and Earth Resources release

(Reports, continued from page 26)

Tyee Basin project yields first report

A comprehensive report entitled Geology and Oil, Gas, and Coal Resources, Southern Tyee Basin, Southern Coast Range, Oregon, by A.R. and W.A. Niem of Oregon State University and with major contributions by E.M. Baldwin of the University of Oregon, has been released as DOGAMI Open-File Report O-89-3 and sells for $9.

The report is the first publication produced in a five-year study project, begun in mid-1988, to investigate the oil, gas, and coal potential of the Tyee Basin. This is an area of more than 4,000 mi² in the southern Oregon Coast Range that is underlain dominantly by Eocene sedimentary rocks. The project is funded by a consortium of public and private supporters, including the Douglas County Industrial Development Board, GCO Minerals Company, the Oregon Department of State Lands, MenaSHA Corporation, the U.S. Bureau of Land Management, the USDA Forest Service, and Weyerhaeuser Corporation.

The new report consists of (1) a blackline compilation geologic map including all relevant published and unpublished studies; (2) a map showing distribution of oil, gas, and coal geochemical data; (3) a plate containing three cross sections; and (4) a text containing preliminary assessment of the oil, gas, and coal potential of the southern Tyee Basin; a discussion of the stratigraphic problems that exist in the southern Coast Range; and tables of data on source rock and maturation, porosity and permeability, coal analyses, and oil and gas shows in exploration wells as well as in water wells and natural seeps.

Much of the information presented in the report consists of previously confidential research data and is made available here for the first time through the cooperation of several oil companies.

Placer minerals study group reports

1979, Topographic maps: Silent guides for outdoorsmen: USGS pamphlet.

1981a, How to order Landsat images: USGS pamphlet.

1981b, Map scales: USGS pamphlet.

undated (a), Map data catalog: 48 p.

undated (b), Understanding maps and scales: USGS poster.

Mining and exploration in Oregon in 1989

by Howard C. Brooks, Baker City Field Office, Oregon Department of Geology and Mineral Industries

PRODUCTION

The U.S. Bureau of Mines estimate of the value of Oregon's 1989 nonfuel mineral production is $199 million, about 12 percent above the $178 million value for 1988. The increase is largely due to higher output of cement and crushed stone and the resumption of nickel production. More than 95 percent of the value of Oregon's nonfuel mineral production is in the construction materials, sand, gravel, stone, and cement. Other nonmetallic commodities produced in 1989 were limestone, pumice (Figure 1), diatomite, clay, zeolite, and talc. Nickel and gold were the only metals produced in significant quantity. In recent years, the State commonly has ranked first nationally in the production of pumice and fourth in the production of diatomite and is a significant producer of processed natural zeolite.

Sand, gravel, and crushed stone for use in construction were produced from pits and quarries throughout the State.

Crushed and screened silica rock was produced for a variety of uses from a quarry in Jackson County by Bristol Silica and Lime-stone Company (Figure 2, active mine site 21; Figure 3). Silica rock from Quartz Mountain (Figure 2, active mine site 18) in Douglas County was used by Glenbrook Nickel Company in its nickel smelting operation at Riddle.

Table 1. Summary of mineral production value (in millions of dollars) in Oregon for the last 18 years. Data for 1989 derived from U.S. Bureau of Mines annual preliminary mineral-industry survey and Oregon Department of Geology and Mineral Industries natural-gas statistics

<table>
<thead>
<tr>
<th>ROCK MATERIALS</th>
<th>METALS AND INDUSTRIAL MINERALS</th>
<th>NATURAL GAS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, gravel, stone</td>
<td>Cement, nickel, pumice, etc.</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>1972</td>
<td>54</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>1973</td>
<td>55</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>1974</td>
<td>75</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>1975</td>
<td>73</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>1976</td>
<td>77</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>1977</td>
<td>74</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>1978</td>
<td>84</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>1979</td>
<td>111</td>
<td>54</td>
<td>+</td>
</tr>
<tr>
<td>1980</td>
<td>95</td>
<td>65</td>
<td>12</td>
</tr>
<tr>
<td>1981</td>
<td>85</td>
<td>65</td>
<td>13</td>
</tr>
<tr>
<td>1982</td>
<td>73</td>
<td>37</td>
<td>10</td>
</tr>
<tr>
<td>1983</td>
<td>82</td>
<td>41</td>
<td>10</td>
</tr>
<tr>
<td>1984</td>
<td>75</td>
<td>46</td>
<td>8</td>
</tr>
<tr>
<td>1985</td>
<td>91</td>
<td>39</td>
<td>10</td>
</tr>
<tr>
<td>1986</td>
<td>96</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>1987</td>
<td>102</td>
<td>52</td>
<td>6</td>
</tr>
<tr>
<td>1988</td>
<td>130</td>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>1989</td>
<td>134</td>
<td>65</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 1. Cascade Pumice Company: part of screening facility (Figure 2, active mine site 14).
ACTIVE MINES AND AREAS

1. Columbia Brick and Tile
2. Bonanza Mining (placer gold)
3. Pyx Mine (lode gold)
4. Greenhorn area (placer gold)
5. Elk Creek (placer gold)
6. Pine Creek area (placer gold)
7. Dooley Mountain area (perlite)
8. Ash Grove Cement West (cement and crushed limestone)
9. Canyon City Placers (placer gold)
10. Lower Grandview Mine (lode gold)
11. Eagle-Picher Industries (diatomite)
12. Teague Mineral Products (bentonite and clinoptilolite)
13. Central Oregon Bentonite/Oregon Sun Ranch (bentonite clay)
14. Cascade Pumice/Central Oregon Pumice (pumice)
15. Oil Dry Production (diatomite)
16. CooSand (Silica sand)
17. D and D Ag Lime and Rock (agricultural limestone)
18. Quartz Mountain (silica)
19. Glenbrook Nickel (nickel)
20. Galice area (placer gold)
21. Bristol Silica and Lime (silica)
22. Josephine Creek area (placer gold)
23. Sucker Creek area (placer gold)
24. Campman Calcite (agricultural limestone)
25. Steatite of Southern Oregon (soapstone)
26. Klamath Falls Brick and Tile (brick)
27. Idol City area (gold)
28. Drewsey area (gold)
29. Gold Creek area (gold)
30. Harper Basin (gold)
31. Shell Rock Butte (gold)
32. Grassy Mountain (gold)
33. Burnt Mountain area (gold)
34. Dry Creek Buttes area (gold)
35. Kaley (gold)
36. Bannock (gold)
37. Mahogany (gold)
38. Hillside (gold)
39. Anderson (gold)
40. Bornite (copper, gold, silver)
41. Bear Creek Butte area (gold)
42. Summer Lake area (gold)
43. Paisley area (gold)
44. Quartz Mountain (gold)
45. Silver Peak (gold, silver, copper)
46. Turner-Albright (copper, zinc, gold)

EXPLORATION SITES AND AREAS

1. Comstock Mine (gold)
2. Herceulean Mine (gold, base metals)
3. Flagstaff Mine (gold)
4. Spanish Gulch (gold)
5. Prairie Diggins (gold)
6. Grouse Creek project (gold, copper)
7. Racey property (gold)
8. Malheur City area (gold)
9. Kerby (gold)
10. Tub Mountain area (gold)
11. Hope Butte (gold)
12. Vale Butte (gold)
13. Idol City area (gold)
14. Drewsey area (gold)
15. Gold Creek area (gold)
16. Harper Basin (gold)
17. Shell Rock Butte (gold)
18. Grassy Mountain (gold)
19. Burnt Mountain area (gold)
20. Dry Creek Buttes area (gold)
21. Quartz Mountain (gold)
22. Red Butte (gold)
23. Katey (gold)
24. Bannock (gold)
25. Mahogany (gold)
26. Hillside (gold)
27. Anderson (gold)
28. Bornite (copper, gold, silver)
29. Bear Creek Butte area (gold)
30. Summer Lake area (gold)
31. Paisley area (gold)
32. Quartz Mountain (gold)
33. Silver Peak (gold, silver, copper)
34. Turner-Albright (copper, zinc, gold)

Figure 2. Mining and mineral exploration sites in Oregon in 1989 (excluding sand and gravel and stone). Active mines are keyed to Table 2; exploration sites and areas are keyed to Table 3.
Table 2. Active mines in Oregon, 1989

1. Columbia Brick Works
 Sec. 14, T. 1 S., R. 3 E., Multnomah County. Plant produces facing brick using clay from a company-owned pit nearby.

2. Bonanza Mining Company—placer gold
 Sec. 3, T. 7 S., R. 45 E., Baker County. Largest mine in Oregon, located on Pine Creek about 3 mi below the old Cornucopia gold mine. Employed 26 people in 1989. Gravel depth varies from 20 to 70 ft; values are concentrated near bedrock. Washing plant handles 60 yd per hour and operates eight months per year, six days per week, three shifts per day. The pit operates two 10-hour shifts per day. Backfilling and reclamation in one part of the pit are concurrent with stripping and mining in another part.

3. Pyx Mine—lode gold
 Sec. 1, T. 10 S., R. 35 E., Grant County. Small operation in early summer; ore milled in a small gravity separation plant in Sumpter.

4. Greenhorn area—placer gold
 Tps. 9, 10 S., Rs. 35, 35½ E., Baker and Grant Counties. Several small, seasonal operations, including parts of Snow Creek, upper North Fork of Burnt River, Parkerville, and Winterset areas.

5. Elk Creek—placer gold
 Tps. 9, 10 S., R. 39 E., Baker County. Several small, seasonal operations.

6. Pine Creek area—placer gold
 T. 12 S., R. 38 E., Baker County. Small seasonal operations including Goldwater, Inc., which has been active for several years.

7. Dooley Mountain area—perlite
 Tps. 11, 12 S., R. 40 E., Baker County. Mined and used by Supreme Perlite Company to produce expanded perlite at a facility in Portland.

8. Ash Grove Cement West, Inc.—cement and crushed limestone
 Sec. 11, T. 12 S., R. 43 E., Baker County. Annual sales were about 500,000 tons of cement and 220,000 tons of crushed limestone valued at over $25 million. Employs 105 people. The crushed limestone is shipped to sugar refiners in Oregon and Idaho for use in the process of extracting sugar from sugar beets. Markets in place for capacity production in 1990.

9. Canyon City Placers—placer gold
 Sec. 6, T. 14 S., R. 32 E., Grant County. Washing plant and dragline operation by Cammetex International, Inc.

10. Lower Grandview Mine—lode gold
 Sec. 6, T. 14 S., R. 37 E., Baker County. Small, seasonal underground mine; new ownership in 1989.

11. Eagle-Picher Industries, Inc.—diatomite
 Processing plant is 7 mi west of Vale in sec. 6, T. 19 S., R. 44 E., Malheur County; open-pit mine sites are 70 mi west of plant in Tps. 19, 20 S., Rs. 35, 36 E., Harney and Malheur Counties. Products are used as filter aids in clarifying fluids including water, beverages, juices, syrups, edible oils, fuels, and pharmaceuticals. Total employment (mining, trucking, processing) about 50 people.

12. Teague Mineral Products—bentonite and clinoptilolite
 Plant is in sec. 8, T. 23 S., R. 46 E.; mines are in sec. 28, 29, T. 23 S., R. 46 E., Malheur County, Oregon, and nearby in Idaho. The bentonite is used chiefly as soil sealant for waste disposal sites, ditches, and ponds, for drilling mud and absorbent, and as binder for cattle feed pellets. Uses of the clinoptilolite include pet litter, odor control products, fungicide carrier, and ammonia absorber. The plant includes five mills, which allows for production of a full range of sized products from coarse granules to micronized powders. Research in the uses of bentonite and zeolite is being continued.

13. Central Oregon Bentonite Company/Oregon Sun Ranch, Inc.—bentonite clay
 Both are in sec. 4, T. 19 S., R. 21 E., Crook County. Small production from adjacent properties near Camp Creek.

 Tps. 17, 18 S., R. 11 E., Deschutes County. Combined annual production about 200,000 tons. The major use is lightweight aggregate in poured concrete and in concrete blocks.

15. Oil-Dri Production Company—diatomite
 Secs. 14, 21, 23, T. 27 S., R. 16 E., Lake County. Product is packaged and sold to several different companies for resale, mainly as pet litter.

16. CooSanD Corporation—silica sand
 Sec. 34, T. 24 S., R. 13 W., Coos County. Uses of product include glass manufacture (Owens Corning in Portland), construction, sand blasting, and railroad traction.

17. D and D Ag Lime and Rock Company—agricultural limestone
 Sec. 20, T. 28 S., R. 5 W., Douglas County. Small producer of ground limestone from quarries operated before 1935 by Oregon Portland Cement Company.

18. Quartz Mountain—silica
 Sec. 2, T. 28 S., R. 1 E., Douglas County. Produced silica for the Glenbrook Nickel Company operation of the nickel smelter at Riddle.

19. Glenbrook Nickel Company—nickel
 Secs. 28, 29, T. 30 S., R. 6 W., Douglas County. Company reactivated former Hanna Nickel Company smelter to process 6-million-ton stockpile of lateritic material grading 0.7 percent nickel left at the site when Hanna closed the smelter in January 1987. The Company has not decided whether to reopen the Nickel Mountain Mine; the equipment was removed when the mine closed.

20. Galice area—placer gold
 Tps. 34, 35 S., R. 8 W., Josephine County. Small, seasonal operations.

21. Bristol Silica and Limestone Company—silica
 Sec. 30, T. 36 S., R. 3 W., Jackson County. Crushed and screened silica rock sold for a variety of uses including poultry grit, sand blasting, and decorative stone. Small amounts of dolomite have been sold from an occurrence on the margin of the silica quarry.

22. Josephine Creek area—placer gold
 Tps. 38, 39 S., R. 9 W., Josephine County. Several small, seasonal operations.

23. Sucker Creek area—placer gold
 Tps. 39, 40 S., Rs. 6, 7 W., Josephine County. Several small, seasonal operations.

24. Campman Calcite Company—agricultural limestone
 Sec. 31, T. 38 S., R. 5 W., Josephine County. Company mined, crushed, and ground limestone from the Jones Marble Quarry, primarily for agricultural use mainly in southwestern Oregon.

25. Steatite of Southern Oregon—soapstone
 Secs. 10, 11, T. 41 S., R. 3 W., Jackson County. Block soapstone sold mainly for carving.

26. Klamath Falls Brick and Tile Company
 Sec. 19, T. 38 S., R. 9 E., Klamath County. Plant produces a variety of facing and paving bricks using clays from pits in several western Oregon counties and northern California.

Cement was produced only by Ash Grove Cement West, Inc. The plant and quarries (Figure 2, active mine site 8) are near Durkee in Baker County. Small amounts of limestone were produced for agricultural use by Campman Calcite Company at the Jones Marble quarry (Figure 2, active mine site 24) in Josephine County and by D and D Ag Lime and Rock Company from a quarry (Figure 2, active mine site 17) in Douglas County. Diatomite was produced by Eagle Picher Industries (Figure 2, active mine site 11) for use as filter aid and by Oil-Dri Production Company (Figure 2, active mine site 15) for use as pet litter. Pumice was produced by Cascade Pumice Company and Central Oregon Pumice Company (Figure 2, active mine site 14) from several quarries near Bend in Deschutes County. Combined annual output has averaged about 200,000 tons for several years.

Bentonite clay and zeolite were produced by Teague Mineral Products Company from its plant (Figure 2, active mine site 12) 2 mi
south of Adrian in Malheur County. Bentonite also was produced by two small operations (Figure 2, active mine site 13), Central Oregon Bentonite Company and Oregon Sun Ranch, Inc., in Crook County.

Clay was produced by Ash Grove Cement West, Inc., for use in making cement. Clay for brick making and engineering applications was produced in several western counties. Two brick plants were operated, one in Multnomah County by Columbia Brick Works, Inc. (Figure 2, active mine site 1), the other in Klamath County by Klamath Falls Brick and Tile Company (Figure 2, active mine site 26).

Carving-grade talc was produced by Steatite of Southern Oregon (Figure 2, active mine site 25).

The nickel plant (Figure 2, active mine site 19) near Riddle was reactivated by Glenbrook Nickel Company.

Gold production was dominated by the Bonanza Mining Company, placer operation (Figure 2, active mine site 2). Some gold was produced at the Lower Grandview lode mine (Figure 2, active mine site 10) and at several dozen small, intermittently operated placer mines in northeastern and southwestern parts of the State (Figure 4).
1. Cornucopia Mine—gold
Sec. 27, T. 6 S., R. 45 E., Baker County. Small underground exploration-drilling program by owners, UNC Corporation.

2. Hercelean Mine—gold and base metals
Sec. 22, T. 8 S., R. 36 E., Baker County. Small exploration and development program by Cable Cove Mining Company.

3. Flaggstaff Mine—gold
Sec. 6, T. 9 S., R. 41 E., Baker County. Drilling program by Hecla Mining Company.

4. Spanish Gulch—gold
Secs. 12, 13, T. 13 S., R. 24 E., and secs. 7, 18, T. 13 S., R. 25 E., Wheeler County. Small drilling program by ARARCO.

5. Prairie Diggings prospect—gold
Sec. 33, T. 13 S., R. 32 E., Grant County. Drilling program by Goldsearch Resources, Inc.

6. Grouse Creek prospect—copper, silver
Secs. 24, 25, T. 14 S., R. 36 E., Baker County. Drilling program continued by Golconda Resources, Ltd.

7. Racie property—gold

8. Malheur City area—gold
Tps. 12, 13 S., Rs. 40, 41 E., Baker County. Land acquisition, surface exploration, and some drilling by Earth Search Sciences, Inc., and Beaver Resources joint venture.

9. Kerby—gold

10. Tub Mountain area—gold
Secs. 4, 5, 6, 7, 8, T. 17 S., R. 45 E., Malheur County. Malheur Mining, Atlas Precious Metals, and Euro-Nevada Mining Corporation, Inc., have claim groups in the area. Malheur Mining's group was leased to Echo Bay. Some drilling on all three properties.

11. Hope Butte—gold
Sec. 21, T. 17 S., R. 43 E., Malheur County. Chevron continued drilling.

12. Vale Butte—gold

13. Idol City area—gold
Tps. 20, 21 S., R. 32 E., Harney County. Drilling by Newmont Mining Company.

14. Drewsey area—gold
Tps. 20, 21 S., Rs. 34, 35 E., Harney County. Exploration and evaluation programs by Cyprus Gold Exploration Company, Battle Mountain Gold Corporation, Reserve Industries, Corona Gold Corporation, and others. Cyprus drilled several holes at the Red Butte prospect in sec. 35, T. 20 S., R. 35 E., and later dropped the claims.

15. Gold Creek area—gold
Secs. 3, 4, T. 2 S., R. 40 E., Malheur County. Geochemical sampling and geophysical surveying by Manville Corporation.

16. Harper Basin—gold
Secs. 22, 23, T. 21 S., R. 42 E., Malheur County. Exploration drilling by American Copper and Nickel Company and Atlas Precious Metals Company on adjoining properties.

17. Shell Rock Butte—gold
Sec. 18, T. 21 S., R. 45 E., Malheur County. Small drilling program by ARARCO, Inc., on property owned by Western Epithermal; lease dropped later. Small drilling program by Atlas Precious Metals Company on its own property.

18. Grassy Mountain—gold
Sec. 8, T. 22 S., R. 44 E., Malheur County. Atlas Precious Metals Company continued drilling, began baseline environmental studies, and submitted operating plan and permit application to the U.S. Bureau of Land Management. Announced reserves total 1.2 million oz of gold in ore averaging 0.005 oz gold per ton.

19. Burnt Mountain area—gold
Secs. 4, 5, 6, 7, 8, 9, T. 23 S., R. 44 E., Malheur County. Land acquisition and sampling by Noranda Exploration, Inc.

20. Dry Creek Buttes area—gold
Tps. 23, 24 S., Rs. 43, 44 E., Malheur County. Rotary drilling by Noranda Exploration, Inc., on the Lavery claims. Manville, ARARCO, and Noranda hold large claim blocks in nearby areas.

21. Quartz Mountain—gold
Sec. 6, T. 25 S., R. 43 E., Malheur County. Chevron drilled one hole for water and set up a prefabricated camp in preparation for an extensive exploration program in 1990.

22. Red Butte—gold
Secs. 26, 27, 34, 35, T. 25 S., R. 43 E., Malheur County. Hand sampling program by Chevron. Prospect is in a Wilderness Study Area.

23. Kately—gold
Tps. 24, 25 S., R. 45 E., Malheur County. Small rotary drill program and soil and rock-ship sampling by ARARCO.

24. Bannock—gold
Sec. 11, T. 26 S., R. 45 E., Malheur County. Small drilling program by Manville.

25. Mahogany—gold
Secs. 25, 26, T. 26 S., R. 46 E., Malheur County. Small drilling program by Manville.

26. Hillside—gold
Secs. 26, 27, 34, T. 29 S., R. 45 E., Malheur County. Surface sampling and geophysical surveys by Manville Corporation.

27. Anderson property—gold
Sec. 35, T. 29 S., R. 45 E., Malheur County. Surface sampling and small drilling program by Nerco Exploration Company.

28. Bornite—copper, gold, silver
Sec. 36, T. 8 S., R. 4 E., Marion County. Plexus Resources Corporation obtained development rights. Company reports that drilling by AMOCO and others in late 1970's and early 1980's indicates reserves of 3.1 million tons averaging 2.49 percent copper, 0.023 oz per ton gold, and 0.067 oz per ton silver.

29. Bear Creek Butte area—gold
Tps. 18, 19 S., R. 18 E., Crook County. Drilling program continued by Freeport-Mcmoran Gold Company.

30. Summer Lake area—gold
Sec. 14, T. 30 S., R. 16 E., Lake County. Small drilling program by N.A. Degerstrom, Inc.

31. Paisley area—gold
T. 34 S., Rs. 18, 19 E., Lake County. Surface investigation by N.A. Degerstrom, Inc.

32. Quartz Mountain—gold
Secs. 26, 27, 34, 35, T. 37 S., R. 16 E., Lake County. Pegasus Gold, Inc., joint-ventured with Quartz Mountain Gold Corporation, agreed to continue exploration, conduct feasibility studies, and develop a mine plan. A feasibility study completed in August 1989 delineates proven and probable reserves of 9.8 million tons for the combined Crone Hill and Quartz Butte deposits, with an average grade of 0.045 oz per ton gold. Drilling by Quartz Mountain Gold Corporation indicates reserves of 40 million tons averaging 0.025 oz gold per ton. More than 625 holes aggregating about 250,000 ft have been drilled on the 9,700-acre property.

33. Silver Peak Mine—gold, silver, copper
Sec. 23, T. 31 S., R. 6 W., Douglas County. Drilling continued by Formosa Mining Company.

34. Turner-Albright—copper, zinc, gold
Secs. 15, 16, T. 41 S., R. 9 W., Josephine County. Savanna Resources, Ltd., and Aur Resources, Ltd., agreed to joint venture; Aur to spend $2.5 million on exploration. Company reports that drilling indicated reserves of 3.3 million tons averaging 1.46 percent copper, 3.3 percent zinc, and 0.11 oz gold per ton.

Table 3. Exploration sites in Oregon, 1989
EXPLORATION

The southeastern Oregon gold rush accelerated following the announcement in late 1988 of a discovery in the Grassy Mountain area. Atlas Precious Metals continued drilling its Grassy Mountain site (Figure 2, exploration site 18) through most of 1989 and announced an increase in geologic reserves to 1.2 million oz of gold in ore averaging 0.065 oz per ton. Feasibility studies and collection of baseline environmental and water-quality data are underway. An operating plan was submitted to the Bureau of Land Management in November. Extensive drilling was also done at the Hope Butte (Figure 2, exploration site 11; Figure 5) and Kerby prospects (Figure 2, exploration site 9). Evaluation of the results is in progress.

Exploration activity still is concentrated in northern Malheur County but is spreading to other areas. Nearly 8,000 claims were located in Malheur County in 1989, bringing the total number of claims in the county to more than 21,000. Exploration drilling was done on at least 16 different properties in the state. Figure 2 shows the location of properties where extensive surface sampling or drilling has been done.

All but two of the deposits in Malheur County are in rocks of Miocene or Pliocene age. The northern two deposits (Figure 2, exploration sites 7 and 8) are partly hosted in an altered quartz diorite porphyry. The mineralization may be Tertiary in age. Most of the other Malheur County deposits are sediment hosted; some of them occur in silicic volcanic rocks. Associated basalt is locally mineralized.

The deposits typically are of epithermal origin (Figures 6 and 7). Hot-spring sinter is common and argillic alteration of the host rocks is common. Anomalous levels of arsenic are also common and may or may not be associated with gold. Chevron geologist David Bush reported that mineralization at Quartz Mountain and Hope Butte has been dated at 17.8 and 3.9 million years, respectively (personal communication, October 1989). The dates are based on multiple radiometric analyses of adularia.

Geologic mapping of the Boise 1° x 2° quadrangle (scale 1:250,000) in central Malheur County continued. The mapping involved workers from the Oregon Department of Geology and Mineral Industries (DOGAMI), the U.S. Geological Survey, and Portland State University. Geologic maps of the Graveyard Point, Owyhee Dam, and Adrian quadrangles were released in 1989 by DOGAMI. Similar geologic maps of the Double Mountain and Grassy Mountain quadrangles were released in early 1990.
ABSTRACT
Oil and gas lease activity declined in 1989. Five U.S. Bureau of Land Management lease sales were held, with no leases purchased. There were filings for 99,351 federal acres. The total of federal acres under lease was 463,528 acres at year's end. No state or county lease sales were held during the year.

Thirteen wells were drilled in the Mist Gas Field and vicinity, of which seven were drilled by ARCO and six by DY Oil. Three ARCO wells and one DY Oil well were successful gas completions. The field had 18 gas producers and seven gas wells awaiting pipeline connection at year's end. A total of 2.6 billion cubic feet (Bcf) of gas was produced during 1989, with a value of $3.5 million. ARCO also drilled an unsuccessful Astoria Basin test in Clatsop County.
The Mist natural gas storage project became fully operational on November 1, 1989. The redesign of the Miller Station was completed during the year.
Northwest Natural Gas Company has constructed a 49-mi natural-gas pipeline from Mist Gas Field to Portland, providing a pipeline loop through the field.
The Department of Geology and Mineral Industries continued the study of the Tyee Basin in Douglas and Coos Counties and will publish the first phase of maps and reports during the year.
Rulemaking is now underway to implement House Bill 2089 and to revise the oil and gas exploration and development rules in Oregon.

LEASING ACTIVITY
There was a decline in leasing activity during 1989. Leasing activity included five public land lease sales by the U.S. Bureau of Land Management (BLM) plus over-thecounter filings of BLM property. No leases were purchased at any of the lease sales. There were filings for 30 parcels totaling 99,351 acres located in Wheeler, Crook, and Wasco Counties. F and F Georesources filed for two of the parcels in Wheeler County, and D.M. Yates filed for the remainder. A total of 183 parcels consisting of 463,528 acres were under lease at year's end. This is a decline from the 876,138 acres in 397 parcels under lease at the end of 1988. The total rental income during 1989 was about $519,000, a decline from the $1,139,000 during the previous year.

At the end of 1989, active State of Oregon leases numbered 58, totaling 73,428 acres. Total rental income was $73,428 for the year.

No state or county lease sales were held during 1989.

Figure 1. ARCO well OR 21-33-86, the deepest well drilled in Oregon during 1989, was a wildcat test in the Astoria Basin in Clatsop County.

DRILLING
A total of 14 exploratory oil and gas wells was drilled in the state in 1989. This is the same number of exploratory oil and gas wells that were drilled during 1988 but is an overall decrease in total wells because during 1988, in addition, five gas-storage wells were drilled and three redrills undertaken. All but one of the wells were drilled in the Mist Gas Field area, a pattern that has continued since the field was discovered in 1979. The other well was a wildcat well drilled by ARCO in the Astoria Basin of northwestern Oregon. This well, the OR 21-33-86 (Figure 1), was located about 12 mi northwest of Mist Gas Field in Clatsop County near the town of Westport. The well was drilled to a total depth of 5,896 ft, making it the deepest well drilled in Oregon during 1989, and it was plugged and abandoned as a dry hole.
At Mist Gas Field, two operators were active during the year. As has been the case for the past several years, ARCO Oil and Gas Company was the most active operator, drilling seven exploratory wells. Of these, three were successful gas completions, and four were dry holes. DY Oil drilled six exploratory wells at Mist, one of which was a successful gas completion (Figure 2), and the rest were dry holes.

Total drilling footage for the year was 33,823 ft, a decrease from the 61,523 ft drilled during 1988. The average depth per well was 2,416 ft, a small decline from the 2,797 ft per well drilled during the previous year.

During 1989, the Oregon Department of Geology and Mineral Industries (DOGAMI) issued 19 permits to drill (Table 1), while 13 permits were canceled during the year (Table 2).

DISCOVERIES AND GAS PRODUCTION

Mist Gas Field saw four new producers, a decrease from the seven producers drilled during 1988. ARCO Oil and Gas Company is the operator of three of the discovery wells, which are the CER 13-1-55, CER 41-16-64, and CC 34-28-65. With the successful completion of the Neverstill 33-30 well, DY Oil became the only other gas producer at Mist. There were 18 producers at year’s end, up from 14 producers at the end of 1988. In addition, seven gas wells were awaiting pipeline connection. Eight additional wells are shut-in from former producers. One of these, the CC 44-21, has been converted by ARCO Oil and Gas Company to a water-disposal well. This will add an additional water-disposal well at the field to supplement the CC 13-1, which is currently the only well used for this purpose.

Gas production for the year totaled 2.5 Bcf. This is a decline from the 4.0 Bcf produced during 1988. Part of the decline is

<table>
<thead>
<tr>
<th>Permit no.</th>
<th>Operator, well, API number</th>
<th>Location</th>
<th>Status, depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>418 ARCO</td>
<td>Oregon 21-33-86 36-007-00020</td>
<td>NW sec. 33 T. 8 N., R. 6 W. Clatsop County</td>
<td>Abandoned, dry hole; TD: 5,985.</td>
</tr>
<tr>
<td>420 ARCO</td>
<td>Col. Co. 34-28-65 36-009-00249</td>
<td>SW sec. 28 T. 6 N., R. 5 W. Columbia County</td>
<td>Completed, gas; TD: 2,240.</td>
</tr>
<tr>
<td>421 ARCO</td>
<td>Col. Co. 42-32-74 36-009-002250</td>
<td>NE sec. 32 T. 7 N., R. 4 W. Columbia County</td>
<td>Permit issued; PTD: 1,750.</td>
</tr>
<tr>
<td>422 ARCO</td>
<td>CER 24-18-64 36-009-00251</td>
<td>SW sec. 18 T. 6 N., R. 4 W. Columbia County</td>
<td>Abandoned, dry hole; TD: 1,810.</td>
</tr>
<tr>
<td>423 ARCO</td>
<td>CER 41-16-64 36-009-00252</td>
<td>NE sec. 16 T. 6 N., R. 4 W. Columbia County</td>
<td>Completed, gas; TD: 2,105.</td>
</tr>
<tr>
<td>424 ARCO</td>
<td>Hamlin 33-17-65 36-009-00253</td>
<td>SE sec. 17 T. 6 N., R. 5 W. Columbia County</td>
<td>Abandoned, dry hole; TD: 3,150.</td>
</tr>
<tr>
<td>425 DY Oil</td>
<td>CER 23-22-64 36-009-00254</td>
<td>SW sec. 22 T. 6 N., R. 4 W. Columbia County</td>
<td>Abandoned, dry hole; TD: 2,680.</td>
</tr>
<tr>
<td>426 Leadco</td>
<td>CC-Jackson 23-17-64 36-009-002555</td>
<td>SW sec. 17 T. 5 N., R. 4 W. Columbia County</td>
<td>Permit issued; PTD: 2,500.</td>
</tr>
<tr>
<td>427 DY Oil</td>
<td>Neverstill 33-30 36-009-00256</td>
<td>SE sec. 30 T. 6 N., R. 5 W. Columbia County</td>
<td>Completed, gas; TD: 2,225.</td>
</tr>
<tr>
<td>428 DY Oil</td>
<td>Forest Cav 13-6-6 36-009-002577</td>
<td>SW sec. 6 T. 5 N., R. 5 W. Columbia County</td>
<td>Abandoned, dry hole; TD: 1,796.</td>
</tr>
<tr>
<td>429 DY Oil</td>
<td>Burris CC 24-8 36-009-00258</td>
<td>SW sec. 8 T. 5 N., R. 4 W. Columbia County</td>
<td>Abandoned, dry hole; TD: 2,684.</td>
</tr>
<tr>
<td>430 DY Oil</td>
<td>Lane CC-24-5 36-009-00259</td>
<td>SW sec. 5 T. 5 N., R. 5 W. Columbia County</td>
<td>Abandoned, dry hole; TD: 1,473.</td>
</tr>
<tr>
<td>432 ARCO</td>
<td>Col. Co. 34-8-75 36-009-00261</td>
<td>SE sec. 8 T. 7 N., R. 5 W. Columbia County</td>
<td>Abandoned, dry hole; TD: 2,706.</td>
</tr>
<tr>
<td>434 ARCO</td>
<td>Col. Co. 13-3-55 36-009-00263</td>
<td>SW sec. 3 T. 7 N., R. 5 W. Columbia County</td>
<td>Permit issued; PTD: 1,655.</td>
</tr>
<tr>
<td>435 ARCO</td>
<td>Col. Co. 13-4-55 36-009-00264</td>
<td>SW sec. 4 T. 5 N., R. 4 W. Columbia County</td>
<td>Permit issued; PTD: 2,025.</td>
</tr>
<tr>
<td>436 ARCO</td>
<td>CER 13-1-55 36-009-00265</td>
<td>SW sec. 1 T. 5 N., R. 5 W. Columbia County</td>
<td>Completed, gas; TD: 1,645.</td>
</tr>
<tr>
<td>437 ARCO</td>
<td>OR 34-25-66 36-007-00022</td>
<td>SE sec. 25 T. 6 N., R. 6 W. Clatsop County</td>
<td>Abandoned, dry hole; TD: 2,452.</td>
</tr>
<tr>
<td>438 ONGD</td>
<td>Oregon State 32-26 36-007-00004</td>
<td>NE sec. 26 T. 1 S., R. 4 W. Washington County</td>
<td>Permit issued; PTD: 2,000.</td>
</tr>
<tr>
<td>439 DY Oil</td>
<td>Lane CC-24-5-A 36-009-00266</td>
<td>SE sec. 5 T. 5 N., R. 5 W. Columbia County</td>
<td>Abandoned, dry hole; TD: 1,126.</td>
</tr>
</tbody>
</table>
attributable to the shutdown of pipeline for construction and maintenance at Mist Gas Field. The cumulative field production as of the end of 1989 was about 38.4 Bcf. The total value of the gas produced for the year was $3.5 million, a decrease from the $6.4 million during 1988. Gas prices ranged from 14 cents to 15 cents per therm, a decrease from the range of 14 cents to 20 cents per therm during 1988.

GAS STORAGE
During the year, Northwest Natural Gas Company completed its redesign of the Miller Station at Mist Gas Field, including installation of two new compressors. This completed construction at the natural gas storage project, which became fully operational on November 1, 1989. Natural gas was injected into the Bruer and Flora Pools, each having three injection-withdrawal wells. Natural gas was withdrawn from these pools starting in December 1989.

OTHER ACTIVITIES
During 1989, Northwest Natural Gas completed construction of the Mist South feeder gas pipeline. This 49-mi pipeline connects the natural gas storage project at Mist Gas Field to the Portland area via a 16-in. pipeline (see Oregon Geology, v. 51, no. 5).

DOGAMI continues the study of the oil and gas potential of the Tyee Basin, located primarily in Douglas and Coos Counties in southwestern Oregon. The first phase of the study is now completed and includes production of a regional geologic map and cross sections and a source-rock report of the area. These will be published and available for purchase from DOGAMI. The study is intended to investigate those characteristics needed to generate and trap gas and oil, namely, source rock, stratigraphy, and structural framework. The study, which is being funded by landowners in the study area and by county, state, and federal agencies, will publish surface geologic maps and a fence diagram of the Tyee Basin using surface and subsurface well control during 1989.

The Northwest Petroleum Association remained active during 1989, with about 125 members at year's end. At monthly meetings, papers related to the oil and gas industry are presented. For 1990, plans are to hold the annual field symposium during September in Roseburg, Oregon, including a field trip to observe the structure and stratigraphy of the Tyee Basin.

Offshore oil and gas exploration is still many years away in the region, but planning is underway at the state and federal levels. The Oregon Ocean Resources Management Task Force, established by the 1987 Legislature, has continued to hold meetings and workshops to gather input regarding planning for new uses of the ocean, primarily mineral development. The Task Force will issue an interim report during early 1990. The general consensus from the public has been that existing uses such as fishing and tourism should be preserved, whereas oil and gas exploration or mining should be prevented. A final plan is scheduled for release in July 1990.

The U.S. Minerals Management Service plans to hold an April 1992 oil and gas lease sale for the Outer Continental Shelf off Oregon and Washington. Planning continues for the sale despite opposition from the State of Oregon, which feels this sale should be delayed or possibly canceled, pending completion of detailed studies of the affects of this activity. Industry interest will be gathered this year, which may ultimately determine whether there will be a 1992 offering.

During 1989, DOGAMI published its Oil and Gas Investigation 15, entitled Hydrocarbon Exploration and Occurrences in Oregon. This publication lists all known oil and gas occurrences in Oregon in wells and on the surface such as oil and gas seeps. Its cost is $7. As a companion to OGI-15, DOGAMI published Open-File Report 0-89-10, Bibliography of Oil and Gas Exploration in Oregon, 1896-1989. This provides a comprehensive listing of references relevant to oil and gas exploration in Oregon. The cost is $5. DOGAMI also has recently revised the Mist Gas Field Report, described in the "Oil and Gas News" (p. 26 of this issue).

DOGAMI has continued the development of rules to implement House Bill 2089 and to revise administrative rules relating to oil and gas exploration and development in Oregon. This work is scheduled for completion during 1990.

Table 2. Canceled and denied permits, withdrawn applications, 1989

<table>
<thead>
<tr>
<th>Permit no.</th>
<th>Operator, well, API number</th>
<th>Location</th>
<th>Issue date</th>
<th>Cancellation date</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>378 ARCO</td>
<td>Longview Fibre 23-33-65 36-009-00215</td>
<td>SW sec. 33 T. 6 N., R. 5 W. Columbia County</td>
<td>3-9-87</td>
<td>3-9-87</td>
<td>Permit canceled; expired.</td>
</tr>
<tr>
<td>379 ARCO</td>
<td>Col. Co. 11-7-65 36-009-00216</td>
<td>NW sec. 7 T. 6 N., R. 5 W. Columbia County</td>
<td>2-19-87</td>
<td>2-21-89</td>
<td>Permit canceled; expired.</td>
</tr>
<tr>
<td>389 Leadco</td>
<td>CC-Jackson 23-17 36-009-00226</td>
<td>SW sec. 17 T. 5 N., R. 4 W. Columbia County</td>
<td>7-1-87</td>
<td>7-1-89</td>
<td>Permit canceled; expired.</td>
</tr>
<tr>
<td>390 ARCO</td>
<td>CFI 31-1-65 36-009-00227</td>
<td>NE sec. 1 T. 6 N., R. 5 W. Columbia County</td>
<td>5-21-87</td>
<td>5-21-89</td>
<td>Permit canceled; per permittee's request.</td>
</tr>
<tr>
<td>411 ARCO</td>
<td>Hamlin 33-17-65 36-009-00245</td>
<td>SE sec. 17 T. 6 N., R. 5 W. Columbia County</td>
<td>7-5-88</td>
<td>4-4-89</td>
<td>Permit canceled; per permittee's request.</td>
</tr>
<tr>
<td>413 ARCO</td>
<td>Col. Co. 22-17-75 36-009-00247</td>
<td>NW sec. 17 T. 7 N., R. 5 W. Columbia County</td>
<td>9-26-88</td>
<td>9-26-89</td>
<td>Permit canceled; expired.</td>
</tr>
<tr>
<td>419 ARCO</td>
<td>Oregon 13-33-86 36-007-00021</td>
<td>SW sec. 33 T. 8 N., R. 6 W. Clatsop County</td>
<td>11-16-88</td>
<td>11-16-89</td>
<td>Permit canceled; expired.</td>
</tr>
<tr>
<td>431 Northwest Fuel Dev. Hamburger 32-14-65 36-009-00260</td>
<td>NE sec. 14 T. 6 N., R. 5 W. Columbia County</td>
<td>7-7-89</td>
<td>11-8-89</td>
<td>Permit canceled; per permittee's request.</td>
<td></td>
</tr>
<tr>
<td>433 ARCO</td>
<td>Meridian 34-31-65 36-009-00262</td>
<td>SE sec. 31 T. 6 N., R. 5 W. Columbia County</td>
<td>—</td>
<td>—</td>
<td>Application withdrawn.</td>
</tr>
</tbody>
</table>
MINERAL EXPLORATION ACTIVITY

Major metal-exploration activity

<table>
<thead>
<tr>
<th>Date</th>
<th>Project name, company</th>
<th>Project location</th>
<th>Metal</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 1983</td>
<td>Susanville</td>
<td>Tps. 9, 10 S.</td>
<td>Gold</td>
<td>Expl.</td>
</tr>
<tr>
<td>May 1988</td>
<td>Wavecrest Resources Inc.</td>
<td>T. 37 S.</td>
<td>Gold</td>
<td>Expl.</td>
</tr>
<tr>
<td>September 1988</td>
<td>Kerby</td>
<td>T. 15 S.</td>
<td>Gold</td>
<td>Expl.</td>
</tr>
<tr>
<td>October 1988</td>
<td>Bear Creek</td>
<td>Tps. 18, 19 S.</td>
<td>Gold</td>
<td>Expl.</td>
</tr>
<tr>
<td>May 1989</td>
<td>Hope Butte</td>
<td>T. 17 S.</td>
<td>Gold</td>
<td>Expl.</td>
</tr>
<tr>
<td>September 1989</td>
<td>Malheur Mining</td>
<td>R. 45 E.</td>
<td>Gold</td>
<td>Expl.</td>
</tr>
</tbody>
</table>

Explanations: App=application being processed. Expl=Exploration permit issued. Com=Interagency coordinating committee formed. baseline data collection started. Date=Date application was received or permit issued.

Exploration and bond ceiling rule making

Advisory Committees organized to make recommendations on exploration permits (HB 2088) and bond ceilings for some metal mines (SB 354) likely will have concluded their work by the time you read this. For a copy of either set of draft rules and a schedule of rulemaking hearings, contact Doris Brown at the Oregon Department of Geology and Mineral Industries (DOGAMI) Mining Land Reclamation Office, 1534 Queen Avenue SE, Albany, OR 97321, phone (503) 967-2039.

Mining issues forum

In order to bring together all groups concerned with mining in Oregon, DOGAMI and others will sponsor a forum to review potential beneficial and negative impacts from large-scale mining in Oregon. Representatives of a wide range of interests, including mining companies, environmental groups, state and local elected officials, and regulatory agencies will be invited to participate.

Additional information will be presented in this column in the May and July issues of *Oregon Geology*.

Status changes

Pegasus Gold is taking over the property currently permitted to Wavecrest Resources at Quartz Mountain and Angel Camp in Lake County. A project coordinating committee meeting was held with Pegasus and the regulatory agencies on February 22 to review the adequacy of the baseline data collected to date.

The operating form of Formosa Exploration, Inc., was approved for completeness in December by DOGAMI. Final approval of the permit by DOGAMI is possible this spring. The Water Pollution Control Facility Permit issued by the Department of Environmental Quality has been drafted. Contact Jerry Turnbaugh, phone (503) 229-5374, for further information.

An initial project coordinating committee meeting for Chevron's Hope Butte property was held in February.

All readers who have questions or comments should contact Gary Lynch or Allen Throop at the MLR office in Albany, phone (503) 967-2039.

Capitol display celebrates 25th anniversary of State Rock

The display case of the Oregon Council of Rock and Mineral Clubs (OCRMC) at the State Capitol in Salem currently houses an exhibit that celebrates the 25th anniversary of the adoption of the Thunderegg as Oregon's State Rock. The exhibit, which will remain until May 15, 1990, was provided by the Far West Lapidary and Gem Society of North Bend/Coos Bay and arranged by Bert Sanne and Cecelia Haines.

The display features a framed copy of Senate Joint Resolution 18, adopted March 29, 1965, and signed by Governor Mark O. Hatfield. Ten color photographs encased in lucite present the theories of the Thunderegg's origin. - OCRMC news release

Corrections

The rush to meet deadlines and the complexity of the Department's new desktop publishing system resulted in errors in the January 1990 issue of *Oregon Geology*. We apologize for any inconvenience this may have caused.

1. Figure 16 caption, p. 8, last sentence should have the words "stream channel" added at the end.
2. Figure 20 caption, p. 10, should read "Reworked airfall deposit exposed in roadcut on the Crooked River grade."
3. Figure 23 caption, p. 11, should read "Dark, cross-beded sands are interspersed with laminated sheet-flood deposits in the Deschutes Formation near Round Butte."
4. Figure 24 caption, p. 11, delete the words "Hyperconcentrated flow."
5. Figure 25 caption, p. 11, change first three words to "Extremely coarse conglomerates."
6. Complete sentences 7 and 8 in "Cove Palisades State Park Field Trip Guide" on p. 13 should read "Flows exposed at the rim of Dry Canyon are Round Butte flows."
7. Stop 4, p. 14, paragraph 5, sentence 2, delete "both" and "(and dark (andesite))". Sentence 4, same paragraph, should be changed to two sentences that read "The second is the light-colored Cove ignimbrite. A white to gray reworked tuff unit overlies a conglomerate and cross-beded sandstone about halfway down the grade."
8. Stop 5, p. 14, paragraph 1, next to last sentence should be changed to read "Their exceptional thickness may be the result of ponding behind a basalt dam downstream, although there is no direct evidence of this other than their thickness and behavior in places as a single cooling unit."
9. Stop 6, p. 15, paragraph 1, sentence 3, change "lower unit" to "upper unit."
| GMS-4 | Oregon gravity maps, onshore and offshore, 1967 | 3.00 |
| GMS-5 | Geologic map, Powers 15-minute Quadrangle, Coos/Curry Counties, 1971 | 3.00 |
| GMS-6 | Preliminary report on geology of part of Snake River canyon, 1974 | 6.50 |
| GMS-8 | Complete Bouger gravity anomaly map, central Cascade Mountain Range, 1978 | 3.00 |
| GMS-9 | Total-field aeromagnetic anomaly map, central Cascade Mountain Range, 1978 | 3.00 |
| GMS-10 | Low-to-intermediate-temperature thermal springs and wells in Oregon, 1978 | 3.00 |
| GMS-12 | Geologic map of the Oregon part of the Mineral 15-minute Quadrangle, Baker County, 1979 | 3.00 |
| GMS-13 | Geologic map, Huntington and parts of Olds Ferry 15-minute Quadrangles, Baker and Malheur Counties, 1979 | 3.00 |
| GMS-14 | Index to published geologic mapping in Oregon, 1948-1979, 1981 | 7.00 |
| GMS-15 | Free-air gravity anomaly map and complete Bouger gravity anomaly maps, north Cascades, Oregon, 1981 | 3.00 |
| GMS-16 | Free-air gravity and complete Bouger gravity anomaly maps, south Cascades, Oregon, 1981 | 3.00 |
| GMS-17 | Total-field aeromagnetic anomaly map, southern Cascades, Oregon, 1981 | 3.00 |
| GMS-18 | Geology of Rickreall/SalemWest/Monmouth/Sidney 71/2-minute Quadrangles, Marion/Polk Counties, 1981 | 5.00 |
| GMS-19 | Geology and gold deposits map, Boulte 71/2-minute Quadrangle, Baker County, 1982 | 5.00 |
| GMS-20 | Geology and geothermal resources, 5 1/2 Bums 15-minute Quadrangle, Harney County, 1982 | 5.00 |
| GMS-21 | Geology and geothermal resources map, Vale East 71/2-minute Quadrangle, Malheur County, 1982 | 5.00 |
| GMS-22 | Geology and mineral resources map, Mount Ireland 71/2-minute Quadrangle, Baker/Grant Counties, 1982 | 5.00 |
| GMS-23 | Geologic map, Sheridan 71/2-minute Quadrangle, Polk and Yamhill Counties, 1982 | 5.00 |
| GMS-24 | Geologic map, Grand Ronde 71/2-minute Quadrangle, Polk and Yamhill Counties, 1982 | 5.00 |
| GMS-25 | Geology and gold deposits map, Granite 71/2-minute Quadrangle, Grant County, 1982 | 5.00 |
| GMS-26 | Residual gravity maps, northern, central, and southern Oregon Cascades, 1982 | 5.00 |
| GMS-27 | Geologic and neotectonic evaluation of north-central Oregon. The Dalles 1st x 2nd Quadrangle, 1982 | 6.00 |
| GMS-28 | Geology and gold deposits map, Greenhorn 71/2-minute Quadrangle, Baker and Grant Counties, 1983 | 5.00 |
| GMS-29 | Geology and gold deposits map, NE1/4 Bates 15-minute Quadrangle, Baker and Grant Counties, 1983 | 5.00 |
| GMS-30 | Geologic map, SE1/4 Pearsoll Peak 15-minute Quadrangle, Curry and Josephine Counties, 1984 | 6.00 |
| GMS-31 | Geology and gold deposits map, NW1/4 Bates 15-minute Quadrangle, Grant County, 1984 | 5.00 |
| GMS-32 | Geologic map, West 1/2 71/2-minute Quadrangle, Clackamas and Marion Counties, 1984 | 4.00 |
| GMS-33 | Geologic map, Scotts Mills 71/2-minute Quadrangle, Clackamas and Marion Counties, 1984 | 4.00 |
| GMS-34 | Geologic map, Stayton NE 1/4 71/2-minute Quadrangle, Marion County, 1984 | 4.00 |
| GMS-35 | Geology and gold deposits map, SW1/4 Bates 15-minute Quadrangle, Grant County, 1984 | 5.00 |
| GMS-36 | Mineral resources map of Oregon, 1984 | 8.00 |
| GMS-37 | Mineral resources map, offshore Oregon, 1985 | 8.00 |
| GMS-38 | Geologic map, NW1/4 Cave Junction 15-minute Quadrangle, Josephine County, 1986 | 6.00 |
| GMS-39 | Geologic bibliography and index maps, ocean floor and continental margin off Oregon, 1986 | 5.00 |
| GMS-40 | Total-field aeromagnetic anomaly maps, Cascade Mountain Range, northern Oregon, 1985 | 4.00 |
| GMS-41 | Geology and mineral resources map, Elk horn Peak 71/2-minute Quadrangle, Baker County, 1987 | 6.00 |
| GMS-42 | Geologic map, ocean floor off Oregon and adjacent continental margin, 1986 | 8.00 |
| GMS-43 | Geologic map, Eagle Butte and Gateway 71/2-minute Quadrangles, Jefferson and Wallowa Counties, 1987 as set with GMS-44/45 | 4.00 |
| GMS-44 | Geologic map, Seekwauqua Junction and Metolius Bench 71/2-minute Quadrangles, Jefferson County, 1987 as set with GMS-43/45 | 10.00 |
| GMS-45 | Geologic map, Madras West and Madras East 71/2-minute Quadrangles, Jefferson County, 1987 as set with GMS-43/44 | 10.00 |
| GMS-46 | Geologic map, Breitenbush River area, Linn and Marion Counties, 1987 | 6.00 |

BULLETINS

- 33 Bibliography of geology and mineral resources of Oregon (1st supplement, 1936-45), 1947
- 35 Geology of the Dallas and Valsletz 15-minute Quadrangles, Polk County (map only). Revised 1964
- 36 Papers on Foraminifera from the Tertiary (v. 2 [parts VII-VIII] only), 1949
- 44 Bibliography of geology and mineral resources of Oregon (2nd supplement, 1946-50), 1953
- 46 Ferrargous bauxite, Salem Hills, Marion County, 1956
- 53 Geologic hazards of parts of northern Hood River, Wasco, and Sherman Counties, 1977
- 61 Gold and silver in Oregon, 1968 (reprint), 1975
- 65 Proceedings of the Andesite Conference, 1969
- 67 Bibliography of geology and mineral resources of Oregon (4th supplement, 1956-60), 1970
- 71 Geology of selected lava tubes, Bend area, Deschutes County, 1947
- 78 Bibliography of geology and mineral resources of Oregon (5th supplement, 1961-70), 1973
- 81 Environmental geology of Lincoln County, 1973
- 82 Geologic hazards of Bull Run Watershed, Multnomah and Clackamas Counties, 1974
- 85 Geologic field trips in western Oregon and southwestern Washington, 1980
- 90 Land use geology of western Curry County, 1976
- 91 Geologic hazards of parts of northern Hood River, Wasco, and Sherman Counties, 1977
- 97 Bibliography of geology and mineral resources of Oregon (6th supplement, 1971-75), 1978
- 99 Geologic hazards, eastern Benton County, 1979
- 100 Geologic hazards of southwestern Clackamas County, 1979
- 101 Geology and mineral resources of Josephine County, 1979
- 102 Bibliography of geology and mineral resources of Oregon (7th supplement, 1976-79), 1981
- 103 Bibliography of geology and mineral resources of Oregon (8th supplement, 1980-84), 1987

MISCELLANEOUS PAPERS

- 5 Oregon's gold placers, 1954
- 11 Articles on meteorites (reprints from the Meteoritics, 1968
- 15 Quicksilver deposits in Oregon, 1971
- 19 Geothermal exploration studies in Oregon, 1976, 1977
- 20 Investigations of nickel in Oregon, 1978

SHORT PAPERS

- 25 Petrography of Rattlesnake Formation at type area, 1976
- 27 Rock material resources of Benton County, 1978
AVAILABLE DEPARTMENT PUBLICATIONS (continued)

<table>
<thead>
<tr>
<th>SPECIAL PAPERS</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Field geology, SW Broken Top Quadrangle, 1978</td>
<td>3.50</td>
</tr>
<tr>
<td>3 Rock material resources, Clackamas, Columbia, Multnomah, and Washington Counties, 1978</td>
<td>7.00</td>
</tr>
<tr>
<td>4 Heat flow of Oregon, 1978</td>
<td>3.00</td>
</tr>
<tr>
<td>5 Analysis and forecasts of the demand for rock materials in Oregon, 1979</td>
<td>3.00</td>
</tr>
<tr>
<td>6 Geology of the La Grande area, 1980</td>
<td>5.00</td>
</tr>
<tr>
<td>7 Pluvial Fort Rock Lake, Lake County, 1979</td>
<td>4.00</td>
</tr>
<tr>
<td>8 Geology and geochemistry of the Mount Hood volcano, 1980</td>
<td>3.00</td>
</tr>
<tr>
<td>9 Geology of the Breitenbush Hot Springs Quadrangle, 1980</td>
<td>4.00</td>
</tr>
<tr>
<td>10 Tectonic rotation of the Oregon Western Cascades, 1980</td>
<td>3.00</td>
</tr>
<tr>
<td>11 Theses and dissertations on geology of Oregon, Bibliography and index, 1899-1982, 1982</td>
<td>6.00</td>
</tr>
<tr>
<td>12 Geologic linear of the northern part of the Cascade Range, Oregon, 1980</td>
<td>3.00</td>
</tr>
<tr>
<td>13 Faults and lineaments of southern Cascades, Oregon, 1981</td>
<td>4.00</td>
</tr>
<tr>
<td>14 Geology and geothermal resources, Mount Hood area, 1982</td>
<td>7.00</td>
</tr>
<tr>
<td>15 Geology and geothermal resources, central Oregon Cascade Range, 1983</td>
<td>11.00</td>
</tr>
<tr>
<td>16 Index to the Ore Bin (1939-1978) and Oregon Geology (1979-1982), 1983</td>
<td>4.00</td>
</tr>
<tr>
<td>17 Bibliography of Oregon paleontology, 1792-1983, 1984</td>
<td>6.00</td>
</tr>
<tr>
<td>18 Investigations of tale in Oregon, 1985</td>
<td>7.00</td>
</tr>
<tr>
<td>19 Limestone deposits in Oregon, 1989</td>
<td>8.00</td>
</tr>
<tr>
<td>20 Bentonite in Oregon: Occurrences, analyses, and economic potential, 1989</td>
<td>6.00</td>
</tr>
<tr>
<td>21 Field geology of the NW 1/4 Broken Top 15-minute Quadrangle, Deschutes County, 1987</td>
<td>5.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OIL AND GAS INVESTIGATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Preliminary identifications of Foraminifera, General Petroleum Long Bell #1 well, 1973</td>
</tr>
<tr>
<td>4 Preliminary identifications of Foraminifera, E.M. Warren Coos County 1-7 well, 1973</td>
</tr>
<tr>
<td>5 Prospects for natural gas, upper Nehalem River Basin, 1976</td>
</tr>
<tr>
<td>6 Prospects for oil and gas, Coos Basin, 1980</td>
</tr>
<tr>
<td>7 Correlation of Cenozoic stratigraphic units of western Oregon and Washington, 1983</td>
</tr>
</tbody>
</table>

- **8** Subsurface stratigraphy of the Ochoco Basin, Oregon, 1984 7.00
- **9** Subsurface stratigraphy of the east Nehalem Basin, 1983 6.00
- **10** Mist Gas Field: Exploration/development, 1979-1984, 1984 4.00
- **11** Biostratigraphy of exploratory wells, western Coos, Douglas, and Lane Counties, 1984 6.00
- **12** Biostratigraphy, exploratory wells, N Willamette Basin, 1984 6.00
- **13** Biostratigraphy, exploratory wells, S Willamette Basin, 1985 6.00
- **14** Oil and gas investigation of the Astoria Basin, Clatsop and northernmost Tillamook Counties, 1985 7.00
- **15** Hydrocarbon exploration and occurrences in Oregon, 1989 7.00
- **16** Available well records and samples, onshore and offshore oil and gas well, 1987 5.00

MISCELLANEOUS PUBLICATIONS

- Geologic map of Oregon east of 121st meridian (U.S. Geological Survey Map I-902), 1977 (blackline copy only) 6.10
- Geologic map of Oregon west of 121st meridian (U.S. Geological Survey Map I-325), 1961 6.10
- Geologic highway map, Pacific Northwest region, Oregon/Washington/Idaho (published by AAPG), 1973 5.00
- Landforms of Oregon (relief map, 17x12 in.) 1.00
- Oregon Landsat mosaic map (published by ERSAL, Oregon State University), 1983 10.00
- Geothermal resources of Oregon (published by NOAA), 1982 3.00
- Index map of available topographic maps for Oregon published by the U.S. Geological Survey 1.50
- Bend 30-minute Quadrangle, Geologic map and reconnaissance geologic map, central Oregon High Cascades, 1957 3.00
- Lebanon 15-minute Quadrangle, Reconnaissance geologic map, 1956 3.00
- Mist Gas Field Map, showing well locations, revised 1990 (Open-File Report O-90-1, ozalid print, incl. production data) 7.00
- Northwest Oregon, Correlation Section 24, Bruer and others, 1984 (published by AAPG) 5.00
- Oregon rocks and minerals, a description, 1988 (DOGAMI Open-File Report O-88-6; rev. ed. of Miscellaneous Paper 1) 5.00
- Mining claims (State laws governing quartz and placer claims) Free
- Back issues of *Oregon Geology*, 1939-April 1988 1.00
- Back issues of *Oregon Geology*, May/June 1988 and later 2.00
- Color postcard: Oregon State Rock and State Gemstone 50

Separate price lists for open-file reports, geothermal energy studies, tour guides, recreational gold mining information, and non-Departmental maps and reports will be mailed upon request. The Department also sells Oregon topographic maps published by the U.S. Geological Survey.

ORDER AND RENEWAL FORM

Check desired publications in list above and enter total amount below. Minimum mail order $1.00. All sales are final. Publications are sent postpaid. Payment must accompany orders of less than $50. On credit card orders, a handling fee of 10% will be added. Subscription price for *Oregon Geology*: $6 for 1 year, $15 for 3 years. Make payment in U.S. dollars only.

Amount enclosed: $________.____ for (check appropriate space):

- Publications marked above:
- Renewal of current subscription / new subscription to *Oregon Geology*.

Name __

Address __

City/State/Zip __

Please charge to Visa / Mastercard, account number: _______________________

Expiration date: ______/____/____

Cardholder's signature___