INDEX TO PROCEEDINGS
OF THE
FORUM ON THE GEOLOGY OF INDUSTRIAL MINERALS
First (1965) through Twenty-Fifth (1989)

1990

STATE OF OREGON
DEPARTMENT OF GEOLGY AND MINERAL INDUSTRIES
DONALD A. HULL, STATE GEOLOGIST

SPECIAL PAPER 24
SPECIAL PAPER 24

INDEX TO PROCEEDINGS OF THE FORUM ON THE GEOLOGY OF INDUSTRIAL MINERALS
First (1965) through Twenty-Fifth (1989)

Compiled by Robert L. Bates

1990

Published in conformance with ORS 516.030

GOVERNING BOARD
Sidney R. Johnson, Chair Baker City
Ronald K. Culbertson Myrtle Creek
John W. Stephens Portland

STATE GEOLOGIST
Donald A. Hull

DEPUTY STATE GEOLOGIST
John D. Beaulieu
THE FIRST TWENTY-FIVE ANNUAL MEETINGS
OF THE FORUM ON THE GEOLOGY OF INDUSTRIAL MINERALS

1st 1965 Columbus, Ohio
2nd 1966 Bloomington, Indiana
3rd 1967 Lawrence, Kansas
4th 1968 Austin, Texas
5th 1969 Harrisburg, Pennsylvania
6th 1970 Ann Arbor, Michigan
7th 1971 Tampa, Florida
8th 1972 Iowa City, Iowa
9th 1973 Paducah, Kentucky
10th 1974 Columbus, Ohio
11th 1975 Kalispell, Montana
12th 1976 Atlanta, Georgia
13th 1977 Norman, Oklahoma
14th 1978 Albany, New York
15th 1979 Golden, Colorado
16th 1980 St. Louis, Missouri
17th 1981 Albuquerque, New Mexico
18th 1982 Bloomington, Indiana
19th 1983 Toronto, Ontario
20th 1984 Baltimore, Maryland
21st 1985 Tucson, Arizona
22nd 1986 Little Rock, Arkansas
23rd 1987 North Aurora, Illinois
24th 1988 Greenville, South Carolina
25th 1989 Portland, Oregon

NOTICE
The Oregon Department of Geology and Mineral Industries is publishing this paper because the subject matter is consistent with the mission of the Department. To facilitate timely distribution of information, camera-ready copy provided by the compiler has not been edited by the staff of the Oregon Department of Geology and Mineral Industries.

Oregon Department of Geology and Mineral Industries Special Papers, ISSN 0278-3703
CONTENTS

Foreword ... lv
Titles and Contents of Proceedings Volumes 1
Subject Index .. 20
Author Index ... 32
Meeting Sites and Sponsoring Agencies 43

The printing of this publication was funded in part
by the
Society of Economic Geologists Foundation, Inc.
The Forum on the Geology of Industrial Minerals was founded in 1965 and has met every year since then. This is a remarkable record, considering that the Forum has no officers, dues, bylaws, or permanent base. As the late John Patton remarked, it is an event, not an organization. A Steering Committee takes care of scheduling future meetings, which is about the only business involved.

Each year’s host—commonly a state or provincial survey—agrees to put on a program and to publish the resulting papers. On the whole, this arrangement has worked well, but it has a built-in problem: the Forum’s proceedings end up as publications of many geological surveys, not as a uniform series under its own name. Some volumes of proceedings have a number in one of the host survey’s series of reports, whereas others carry the survey’s name but stand alone and are not part of a series. Most are in the 8½-by-11 size, but two are smaller. Variations in typography and format are numerous. Proceedings of the first 25 Forums have been published in 22 states and one province (two states, Ohio and Indiana, have hosted the Forum twice). A few of the earlier publications are out of print, but most remain available.

This report brings together information on all the publications of the Forum’s first quarter-century. The first section consists of the titles, citations, and contents of each volume of proceedings. Then comes a subject index, followed by an author index. Each entry of these indexes is keyed by number to the appropriate volume of proceedings, so the reader may find the title and full citation of a desired paper by referring to the first section. At the close of the report is an address list of the agencies that have acted as Forum hosts.

Making a compilation like this one is an open invitation to error: misspelled names, reversed initials, page numbers wrong, and incorrect punctuation. If such errors have crept in here, it is in spite of conscientious typing by Helen Hayes and careful proofing by Marion Bates and me. We crave your indulgence. Our work appears through the good offices of Ron Geitgey and Beverly Vogt of the Oregon Department of Geology and Mineral Industries. All of us hope that geologists will find the report useful as a guide to the distinguished publication record originating in the Forum on the Geology of Industrial Minerals.

ROBERT L. BATES
October 1990
Proceedings

Forum On Geology Of Industrial Minerals

1. A Symposium on the Geology of Industrial Limestone and Dolomite.

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword, Robert L. Bates</td>
<td>97</td>
</tr>
<tr>
<td>Geological communication in the industrial minerals, Robert L. Bates</td>
<td>98</td>
</tr>
<tr>
<td>Role of a state geological survey, Lawrence F. Rooney</td>
<td>101</td>
</tr>
<tr>
<td>A railroad geologist looks at limestone and dolomite, Raymond S. Shrode</td>
<td>110</td>
</tr>
<tr>
<td>High-calcium limestone deposits of Pennsylvania, F. M. Swain, J. G. Palacas, and J. C. Kraft</td>
<td>116</td>
</tr>
<tr>
<td>New York cement producers adjust to geologic complexities, Severn P. Brown</td>
<td>123</td>
</tr>
<tr>
<td>Limestone deposits vs. beneficiation, John A. Ames</td>
<td>131</td>
</tr>
<tr>
<td>Importance of cement market characteristics to the industrial geologist, George H. K. Schenck and Henry N. McCarl</td>
<td>137</td>
</tr>
<tr>
<td>Limestone and dolomite: geologists and percentage depletion allowances, Byron N. Cooper</td>
<td>146</td>
</tr>
<tr>
<td>Water, clay, and rock soundness, James R. Dunn and Peter P. Hudec</td>
<td>153</td>
</tr>
<tr>
<td>Sedimentology of the Salem Limestone in Indiana, Ned M. Smith</td>
<td>168</td>
</tr>
<tr>
<td>Petrographic analysis of northern Indiana carbonate aggregates, N. B. Aughenbaugh and R. W. Lounsbury</td>
<td>179</td>
</tr>
<tr>
<td>Corps of Engineers procedure in the development of a new limestone or dolomite source, James E. Brewer</td>
<td>188</td>
</tr>
<tr>
<td>Significance of chert in limestone and dolomite used as concrete aggregate, William A. Kneeler</td>
<td>191</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The state geological survey and the portland cement industry, Kenneth N. Weaver</td>
<td>1</td>
</tr>
<tr>
<td>Cement raw materials in Indiana, Lawrence F. Rooney</td>
<td>13</td>
</tr>
<tr>
<td>Geology of cement raw materials in Ohio: a summary, Robert L. Bates</td>
<td>23</td>
</tr>
<tr>
<td>Geology of cement raw materials in Kentucky, Preston McGrain and Garland R. Dever, Jr</td>
<td>31</td>
</tr>
<tr>
<td>Geology of cement raw materials in Illinois, J. E. Lamar and Richard D. Harvey</td>
<td>45</td>
</tr>
<tr>
<td>Gypsum resources of Iowa, Fred H. Dorheim</td>
<td>73</td>
</tr>
<tr>
<td>Chemical variations in commercial limestone deposits, Kenneth K. Landes</td>
<td>83</td>
</tr>
<tr>
<td>Deleterious constituents in cement raw materials, N. W. Martin and R. C. Gibson</td>
<td>91</td>
</tr>
<tr>
<td>Composition of dolomites in carbonate rocks used as concrete aggregates, Donald L. Biggs</td>
<td>101</td>
</tr>
<tr>
<td>Observations on the use of foliated rocks for coarse aggregate in paving concrete, Michael A. Ozol</td>
<td>111</td>
</tr>
<tr>
<td>Radioactivity of cement raw materials, Harold A. Wallenberg and Alan R. Smith</td>
<td>129</td>
</tr>
</tbody>
</table>
Application of x-ray emission and diffraction to raw materials exploration, G. S. Bobrowski..................... 149
Exploring for cement raw materials in developing countries, Robert Mitchell... 155
Cement raw materials on the public domain, Charles M. Mallett... 163
Developments in the transportation of cement raw materials and their impact on cement plant location, Richard J. Anderson...... 167
Magnesium mineralization, Gabbs, Nevada, Charles J. Vitaliano and John H. Cleveland...................... 173

The industrial minerals: in retrospect, introspect, and in prospect, Ian Campbell.. 2
Inventory of construction materials by photo interpretation in Kansas, Alvis H. Stallard................................. 7
The use of statistical analysis in quarry evaluation, Terry R. West, Ned M. Smith, and Robert E. Johnson.................. 10
Lignite—black gold? Donald Schwartz... 26
Sand and gravel exploration by thermal sensing of soil, Donald D. Carr and William M. Webb.............................. 32
Evaluation of coarse aggregate for architectural concrete, William E. Cutcliffe and James R. Dunn....................... 39
Geometry of deposits of the sedimentary nonmetallics, Robert L. Bates... 45
Stratigraphy and genesis of dolomite, Edwards Formtion (Lower Cretaceous) of Texas, W. L. Fisher and Peter U. Rodda........ 52
Cement raw mix control through x-ray emission spectroscopy, Bradner D. Wheeler.. 76
The geochemistry of the Oread Lime stone, O. Karmie Galle.. 97
Aggregate solubility related to chert petrographic textures and electron surface morphologies (abstract), William A. Kneller.. 110
Relationships between alpha-quartz cell parameters and some physio-chemical properties of chert aggregates, John T. Wilband and William A. Kneller.................. 111
Dissolved salts in oil-field brines—a wasted resource?, Ernest E. Angino.. 120
Opportunities in the beneficiation of feldspathic sands, Frank W. Bowdish... 126
Pitfalls in the economic exploitation of industrial minerals, Paul J. DuCharme... 132
Ore reserve calculations, Scott W. Hazen, Jr........................ 138
A material producer's approach to workable zoning ordinances, Verne E. Dow.. 152
Potential pozzolanic materials, Floyd D. Everett.................. 156
Some potential nonmetallic mineral resources in Missouri, James A. Martin and Heyward M. Wharton.................. 162
A feasibility study for the production of filter aids from Kansas volcanic ash, William R. Hess............. 177

The view from the Forum, John B. Patton.............................. 3
Resource and economic importance of Gulf Coastal salt deposits, M. E. Hawkins and S. O. Wood, Jr.......................... 7
Phosphate in the Atlantic and Gulf Coastal Plains, James B. Cathcart... 23
Chemicals from the sea, W. F. McIlhenny.............................. 35
Industrial carbonates of the Texas Gulf Coastal Plain, G. K. Eifler, Jr.. 45
Gulf Coast sulfur resources, John C. Myers.............................. 57
The Louann salt of the Gulf Coastal region (abstract), George C. Hardin, Jr... 67
Cap rock genesis and occurrence of sulfur deposits, Ralph E. Taylor.. 69
Internal structure and petrofabrics of Gulf Coast salt domes, William R. Muehberger and Patricia S. Clabaugh.............................. 81
Geological exploration with a major chemical company, W. N. McAnulty, Sr.. 91
The structure of the Gulf Coast chemical industry, Stanley A. Arbingast.. 95
Coordinate evaluation of evaporite deposits by dynamic modelings and simulation, Louis I. Briggs and Darinka Zigic-Toshich.. 99
Environments of phosphorite deposition in the Central Florida phosphate district, D. H. Freas and S. R. Riggs.............................. 117
Environmental factors controlling oyster shell deposits, Texas coast, Alan J. Scott... 129
Gravel deposits of the Minneapolis quadrangle, Minnesota, R. K. Hogberg.. 151
Utilization of depositional models in exploration for nonmetallic minerals, J. H. McGowen.............................. 157

Silica sand for glass production in a portion of the Atlantic Coastal Plain, Norman K. Olson.............................. 3
Sand and gravel resources of the Ohio River Valley: Lawrenceburg to Jeffersonville, Indiana, William M. Webb.............................. 23
Connecticut's declining sand and gravel resources, Harry L. Siebert.. 43
Detailed petrography—an aid in the evaluation of gravel aggregate for freeze-thaw resistance, Nanna B. Stewart.............................. 55
Alpha's sand and gravel deposit and processing plant at Martins Creek, Pennsylvania, Allen R. Krueger.............................. 91
The role of applied geology in producing high friction aggregate, William E. Cutcliffe... 105
Palmerston Sandstone as a source of sand in Carbon and northeastern Schuylkill Counties, Pennsylvania, William D. Sevon... 119
Geologic frontiers in exploration for sedimentary industrial minerals, George I. Smith.............................. 141
Mineral resources, computers and the environmental context,
James R. Dunn and William A. Wallace.................. 153

Long range planning for aggregate materials in metropolitan
New York area, Peter P. Hudec.......................... 165

Potential limestone and dolomite resources of northern Indiana,
Lawrence F. Rooney and Curtis H. Ault.................. 179

Industrial minerals and the community—an alienation gap,
Lance Meade... 225

Mineral aggregates, exploration, mining and reclamation,
Gregory E. Klosterman................................... 233

Industrial mineral distribution by unit train, Carl J. Liba...... 243

Symposium: a panel discussion, A. A. Socolow, G. E. Allen, J. R.
Coxey, J. R. Dunn, F. A. Masland, Jr., L. J. Minnick......... 259

6. Proceedings, Sixth Forum on Geology of Industrial Minerals. I,
Chemical and Industrial Rocks and Minerals; II, Building and

The party's over: a rambling discourse on suspended contempt,
the bittersweet boom, and other heresies, Lawrence F. Rooney.. 2
The mineral well act, Robert E. Ives... 4
Surface mining rehabilitation in Ontario—legislation and
implementation, W. E. Coates... 5

Discovery of potash in the A-1 Salina Salt in Michigan,
Raymond J. Anderson and G. C. Egleson.............................. 15

Distribution of Silurian potash in the Michigan Basin,
R. David Matthews.. 20

Detection of potash zones by drilling fluid analysis,
Raymond J. Anderson and E. C. Majeske.......................... 34

Potash feldspar in the Franconia formation, Wisconsin and
Minnesota, I. Edgar Odom, John L. Hiatt, and David L. Kramer.. 37

Limestone as raw material for hydrocarbon fuels, C. A. Salotti,
E. W. Heinrich, and A. A. Giardini...................................... 48

The economic potential of ferromanganese nodules in the Great
Lakes, Edward Callender.. 56

Geology of gypsum in the Lower Peninsula, Michigan,
Louis I. Briggs... 66

Environmental problems and the construction aggregate industry,
William E. Hole, Jr... 77

Potential use of Ohio limestones and dolomites for architectural
aggregate, David A. Stith... 81

Transportation advantages—a unifying factor in mineral aggregate
valuation, P. P. Hudec, J. R. Dunn, and S. T. Brown........... 87

Evaluation of three gravel sampling methods, Thomas A. Herbert.... 95

Sand and gravel deposits of the Maumee River Estuary,
Charles E. Herdendorf and Lawrence L. Braidech................ 103

Slag—Michigan's all purpose aggregate, R. Thomas Segall........ 117

Relationships between physical and chemical properties of the
Brassfield Limestone (Silurian) in Indiana, Ohio and Kentucky,
Donald D. Carr, Robert R. French, and Robert F. Blakely........ 127

The challenge for the geologist in the extractive industry,
H. Lyn Bourne... 138

Clay and shale resources of Michigan, Harry O. Sorensen........ 143

4

Mineral resource law: the spectre of ecology, D. Wallace Fields.... 5
Conflicting land use in the Florida land-pebble area,
J. W. Sweeney... 9
Sedimentary fractionation and industrial-mineral deposits,
Robert L. Bates.. 13
Economic geology of Florida heavy minerals, Thomas Garnar........ 17
Origin, diagenesis, and structure of bauxite deposits in southeast Alabama, Glenn P. Jones... 23
Sand and gravel exploration methods, Hill McDonald.................. 29
Fuller's earth and bentonite in southeastern states, Sam Patterson... 37
Vertical variability in the attapulgite mining area,
Charles E. Weaver and Kevin C. Beck.................................... 51
Absorption characteristics of opaline clays from the Eocene of
Georgia, Robert E. Carver.. 91
Future of kaolin industry in southeastern United States, B. F. Buie.. 103
Miocene clay deposits of peninsular Florida,
F. Michael Wahl and Bobby J. Timmons.................................. 109
Apatite deposits—east central Bahia, Brazil, Gus H. Goudarzi,
Pedro Antonio Couto, and Carlo Henrique de Souza.................... 117
On the origin of dolomites, Bruce B. Hanshaw and William Back..... 139
Crystallochemical and geochemical comparisons of recent with
older dolomites, Lynton S. Land, Emilio Mutis, and
W. F. Bradley... 155
Petrography of carbonate rocks by image analysis,
Richard D. Harvey and John C. Steinmetz............................... 161
Compositional variations in high-calcium limestone deposits in
western Kentucky, Garland R. Dever, Jr. and Preston McGrain..... 171
The role of Florida producers in world phosphate markets,
Joseph L. Weaver.. 181
Phosphate industry and environmental control, Bruce Congleton..... 185
A program for ore control in the central Florida phosphate
district, Richard C. Fountain and Michael E. Zellars.................... 187
Hard-rock phosphate in Florida, N. K. Olson................................ 195
The origin of some phosphatic minerals in Coastal Plain sediments,
John K. Adams.. 211
The relationship between silicic volcanism and the formation of
some sedimentary phosphorites, D. R. Lowe.............................. 217
Georgia phosphate: stratigraphy and economic geology of the Chatham
County deposit, James W. Furlow... 227

Of dinosaurs, economists, and other monsters,
Lawrence F. Rooney.......................... 1
Limestone quarry in a gravel pit, Robert L. Bates........ 5
Limestone and dolomite requirements for glass containers,
William W. Kephart.......................... 11
Use of limestone in Iowa road construction, James D. Myers.... 17
Pennsylvanian clays and shales of south-central Iowa,
George R. McCormick.................................. 23
Structural clay -- where is it?, Don W. Steffen............ 37
Influence of cyclic deposition, structural features, and hydrologic controls on evaporite deposits in the St. Louis Limestone in southwestern Indiana, Duane B. Jorgensen and Donald D. Carr... 43
Geology of the U.S. Gypsum Sperry, Iowa mine,
Lyle V. A. Sendlein.................................. 67
Availability and potential utilization of byproduct gypsum in Florida phosphate operations, John W. Sweeney and Bobby J. Timmons.......................... 89
Remote sensing -- a new tool for industrial minerals exploration, James V. Taranik.......................... 99
Barite ore potential of the tailings ponds in the Washington County Barite District in southeastern Missouri,
Heyward M. Wharton.................................. 107
Subsurface pumped storage and environment, R. L. Loofbourow.... 121
The role of the geologist in environmental pollution control,
Verne E. Dow.. 131
Humic acid complexes from naturally oxidized lignite: their genesis, chemistry and utilization, Paul L. Broughton........ 135
Mineral resources development in the public domain -- an unfinished case history, Richard C. Runvik.......................... 159
A matrix classification for industrial minerals and rocks [with chart], James R. Dunn.......................... 185

Fluorine resources -- an overview, Gill Montgomery............... 1
The environments of deposition of fluorspar, R. M. Grogan,
P. K. Cunningham-Dunlap, H. F. Bartlett, and L. J. Czel........ 4
Geology of the Derbyshire fluorspar deposits, United Kingdom,
J. E. Mason.. 10
Geology of Mexican fluorspar deposits, Greenleaf W. Pickard.... 23
Geology of fluorspar deposits of the western United States,
Ronald G. Worl...................................... 31
Some fluorite-barite deposits in the Mississippi Valley in relation to major structures and zonation, Allen V. Heyl........ 55
Illinois-Kentucky fluorspar district, Robert D. Trace.......... 58
Structure of the fault systems in the Illinois-Kentucky fluorspar district, John W. Hook.......................... 77
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>Geology and history of Pennwalt Corporation's Dyers Hill Mine,</td>
<td>John S. Tibbs</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Livingston County, Kentucky</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Eagle-Babb-Barnes fluorspar project, Crittenden County, Kentucky</td>
<td>F. B. Moodie III and Preston McGrain</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conservation and reclamation in the sand and gravel industry,</td>
<td>William E. Hole, Jr.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Influence of geology on pit and quarry reuse planning,</td>
<td>Kenneth L. Schellie</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Assets that can become liabilities, M. R. Leonard</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Medusa's reclamation programs in three states,</td>
<td>E. D. Shackleton and Keith C. Roberts</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Conversion from quarrying to underground mining, Nolan B.</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Aughenbaugh, Carl R. Christiansen, and James J. Scott</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overview of use of carbonate rocks for controlling acid mine drainage</td>
<td>Ronald D. Hill</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Selection of limestones as neutralizing agents for coal-mine water,</td>
<td>Charles T. Ford</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Limestone for controlling acid mine drainage and for treatment of</td>
<td>Maurice Deul</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>acid mine water,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock types and laboratory analyses as a basis for managing mine soils</td>
<td>Richard Meriwether Smith, W. E. Grube, Jr., A. A. Sobek, and R. N. Singh</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Control of industrial sulfur dioxide emissions using carbonate rock</td>
<td>James L. Crowe</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>materials,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbonate rock properties required by desulfurization processes,</td>
<td>Dennis C. Drehmel and Richard D. Harvey</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Lake marls, chalks, and other carbonate rocks with high dissolution</td>
<td>Richard D. Harvey, Robert R. Frost, and</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>rates in SO2-scrubbing liquors,</td>
<td>Josephus Thomas, Jr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impact on the limestone industry of the use of throwaway-scrubbing</td>
<td>N. A. Frazier, R. B. Engdahl, J. M. Genco,</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>processes by utilities,</td>
<td>H. S. Rosenberg, and J. H. Oxley</td>
<td></td>
</tr>
<tr>
<td></td>
<td>From limestone to lime: a new concept in gas scrubbing,</td>
<td>Clifford J. Lewis</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Disposal of by-products from lime and limestone scrubbers at coal-</td>
<td>L. John Minnick</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>burning plants,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special Publication 74, 186 p., 1976.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mining trona for soda ash in Wyoming, Lawrence E. Mannion</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sodium sulphate deposits of Saskatchewan and Alberta,</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Paul L. Broughton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industrial minerals: Alberta's uncelebrated endowment,</td>
<td>Wylie N. Hamilton</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Limestone resources of Alberta, M. E. Holter</td>
<td></td>
<td>37</td>
</tr>
</tbody>
</table>
Saskatchewan potash in 1975 -- An update on our knowledge, Colin E. Dunn

Review of the western phosphate field, James A. Rhodes

Zeolites in sedimentary deposits of the northwestern United States -- potential industrial minerals, Richard A. Sheppard

Hell bent for bentonite, William B. Beatty

Silica rock in the northwest, Peter M. Peterson

The geology of Montana talc deposits, Richard H. Olson

Vermiculite in the United States, Alfred L. Bush

Gem materials of British Columbia, Wilbert R. Danner

Limestone resources of southwestern British Columbia, Wilbert R. Danner

Philosophical test-pitting, or thinking while we dig,
 Donald A. Brobst

The crushed granite industry of the Atlanta metropolitan area,
 Robert L. Atkins and W. Robert Power

The origin of Georgia's kaolin deposits, Roger S. Austin

Alumina from domestic resources, Don H. Baker, Jr

Geological classification and evaluation of heavy mineral deposits,
 Thomas E. Garnar, Jr.

Reconnaissance investigations of offshore phosphate deposits of
 Georgia and South Carolina, James L. Harding and
 John E. Noakes

Development of high extraction magnetic filtration by the kaolin
 industry of Georgia, Joseph Iannicelli

Defining a commercial dimension stone marble property,
 Lance Meade

Southeastern ceramic raw materials, J. L. Pentecost

Economic geology of the Georgia marble district, W. Robert Power

Geology of kyanite, Dennis Radcliffe

 Themes: Gypsum, Silica-rich Sediments, Natural Brines, and

Some factors involved in prospecting for gypsum deposits,
 Duane Jorgensen

Major gypsum districts of western Oklahoma, Kenneth S. Johnson

Energy usage in the gypsum industry, E. Robert Kiehl

Gypsum production and land reclamation by U.S. Gypsum Company at
 Southard, Oklahoma, Edward B. Westphal

Economics of glass-sand prospects, Thomas E. Shuffleburger, Jr.

Studies of the variability of feldspathic sands refined from the
 Arkansas River, Frank W. Bowdish

Impact of environmental considerations on the industrial-sand
 industry, Richard A. Hunnisett and George H. Didawick

Tripoli deposits of southwest Missouri and northeast Oklahoma,
 W. F. Quirk and A. K. Bates

8
Arkansas novaculite -- a silica resource,
Drew F. Holbrook and Charles G. Stone.......................... 51

The significance of porosity and surface-area measurements of chert
to concrete petrology [abstract], William A. Kneller and
Karinlee Kneller... 59

Domestic petroleum outlook and its impact on industrial mineral
development [abstract], Thomas M. Garland..................... 59

Origin and chemical evolution of brines in sedimentary basins,
Alden B. Carpenter.. 60

Geochemistry of bromide-rich brines of the Dead Sea and southern
Arkansas, Alden B. Carpenter and Michael L. Trout............... 78

Iodine in northwestern Oklahoma, Howard M. Cotten............... 89

Geochemistry of anomalous lithium in oil-field brines,
A. Gene Collins.. 95

Preliminary design and analysis of recovery of lithium from brine
with the use of a selective extractant, Vi-Duong Dang and
Meyer Steinberg.. 99

14. Proceedings, Fourteenth Annual Forum on the Geology of Industrial
Minerals. Themes: Production of Industrial Minerals as Related to
Regulatory Constraints; Industrial Mineral Mining in Complex Geologic

Industrial minerals and the mining law, Andrew J. Regis........... 1

Zoning for minerals in Carroll County, Maryland,
James R. Dunn, Edmund R. Cuman and Charles M. Preston........ 3

Minimizing regulatory problems of non-coal surface mines,
Dennis Pennington... 6

The use of industrial minerals in construction of the Nelson A.
Rockefeller Empire State Plaza, Robert H. Fickies and
Robert J. Dineen.. 13

Constraints on industrial minerals -- the Ontario experience,
G. Robert Guillet.. 21

Mining as a threat to New York's Deer Creek Marsh,
Breck Trautwein and John J. Dragonegli........................ 27

The practicalities of a county-by-county survey of granular
materials, Edward A. Fernau.................................. 32

Clearing the air -- a geological approach permits a quick and fair
assessment of asbestos(?) hazard in crushed stone,
M. Raymond Buyce and James R. Dunn............................ 34

Marketing analysis of the sand and gravel business using central-
place theory and surficial geology maps, Robert H. Fakundiny... 40

Quality control of aggregates used by the New York State Department
of Transportation [abstract], Robert V. Osborne and
George D. Young.. 53

The Vermont marble belt and the economics of current operations,
Lance P. Meade.. 54

The Port Leyden, New York, heavy-mineral deposit,
Byron D. Stone and Eric R. Force................................ 57

Cement limestone mining in a structurally complex setting,
George M. Banino... 65

Durability of shales in embankments and backfills,
Peter P. Hudec.. 70
Reserve "determination" and selective mining in volcanic rocks, Sonoma and Napa Counties, California, Charles L. Taylor........ 81
Ore reserve estimates in pegmatites of the southern Black Hills, South Dakota, U.S.A., Rudolph K. Hoagberg and George H. Edwards.. 87
Reconnaissance investigation of high-calcium marble in the Beaver Creek drainage basin of St. Lawrence County, New York, C. Ervin Brown... 97
Geological spectrum of glass-sand deposits in eastern Canada and their evaluation, E. Wm. Heinrich................................. 106
Reserve determinations in a condemnation case in Pennsylvania, Bernard J. O'Neill, Jr.. 113
Ground vibration control in quarry blasting, Clayton L. Bolton, Jr... 119
Plate tectonics and industrial minerals, Kevin Burke............. 120

Development of industrial minerals on Federal lands, Andrew J. Regis... 1
Problems in developing cement raw materials in western states, Clarence E. Burleson... 8
The past decade -- mineral aggregate resource management in Ontario, S. E. Yundt... 11
Geological mapping and the aggregate resources inventory in Ontario, Owen L. White... 23
The effects of mineral conservation legislation on Colorado's aggregate industry, Stephen D. Schwochow.............................. 29
Production and marketing of rotary kiln expanded shale lightweight aggregates, Andrew Mackie................................. 42
Clay and structural clay products in the Denver area, Wayne Spence... 47
Raw materials for technical ceramics, Barton Hart................................. 51
Development of a metallurgical limestone deposit, James G. Wark... 53
Production and processing problems of western glass sands, Edwin H. Bentzen, III... 63
Refractory clays -- prospecting, mining, reclamation, Glenn Golson.. 75
Alumite -- a potentially economic source of aluminum and potash?, Robert B. Hall... 77
Development of nahcolite-rich oil shales, Irvin Nielsen...................... 89
Market potential of the Green River nahcolite/dawsonite in Colorado, Clifford B. Farris.. 96
Zeo lites -- economic minerals in Colorado's future [abstract], Arthur J. Gude, III... 105
General review of northern Colorado and southeastern Wyoming kimberlites, diamonds, and related research activity, W. D. Hausel and M. E. McCallum.. 106
Rare-earth provinces of Colorado, E. Wm. Heinrich............................... 116

Occurrence, exploration, and evaluation of cement raw materials,
Hank Allen .. 1
The St. Louis Limestone: some of its geologic features in the
St. Louis area, A. C. Spreng 5
Fault-finding in north-central Missouri: Case history of a
geological investigation for a proposed limestone mine
[abstract], William T. Shefchick, Diana D. Long and
Eileen Chase .. 13
Stone performance specifications for railroad ballast [abstract],
John B. Heagler, Jr. ... 15
Silica-sand proppants used in well stimulation,
Rudolph K. Hoagberg and Jean Koerner-Moore 17
Aggregates evaluation in a recreationally oriented state,
Bobby J. Timmons .. 29
Lands for potential mineral resource development,
Karen R. Kuff ... 33
Underground space resources in Missouri, John W. Whitfield 43
Origin, history, and exploitation of Missouri fire clay deposits,
Roy R. Nordwald .. 53
Trace elements and their mineral sources in flint clays and
associated aluminous rocks [abstract],
Harry A. Tourtelot and Josephine C. Boernge 59
Geology and economic potential of the Arkansas barite deposits
[abstract], Lynn A. Burton and Ferryl C. Gale 61
Geological review of the Southeastern Missouri Barite District,
Steven W. Sikich .. 63
Geology of Nevada barite, Dennis B. Duewel and
Michael J. McFarlane ... 71
Barite deposits outside the United States [abstract],
Donald A. Brobst .. 77

17. Industrial Rocks and Minerals of the Southwest. New Mexico

Industrial minerals of New Mexico in 1981,
G. S. Austin, F. E. Kottlowski, and W. T. Siemers 9
Geologic overview of the Carlsbad potash-mining district,
George B. Griswold .. 17
Langbeinite in potash deposits, Norbert T. Rempe 23
Potash in Libya, Gus H. Goudarzi 27
New Mexico's resources: a mineral-domain potpourri,
Robert W. Eveleth ... 31
Mica resources of the western United States, Richard J. Beckman
New Mexico limestones — geology, uses, and economic potential of
high-calcium limestone, W. T. Siemers 39
Gypsum resources of New Mexico, Mark J. Logsdon 43
Large-scale adobe-brick manufacturing in New Mexico,
Edward W. Smith .. 49

11
Scoria exploration and utilization in New Mexico, JoAnne C. Osburn... 57
Geology of barite in New Mexico, Thomas J. Smith.......................... 61
Zeoilite deposits in the Gila and San Simon valleys of Arizona and New Mexico, Ted H. Eyde... 65
Lithium-rich tuffs in the Popotosa Formation, New Mexico, Sigrid Asher-Bolinder.. 73
The origin of talc in the Allamoore district, Texas, W. B. Bourbon... 77
Fluorspar deposits of Christmas Mountains district, Brewster County, Texas, Franklin W. Daugherty.. 85
Geology of the perlite deposit at No Agua Peaks, New Mexico, David Whitson.. 89
Perlite in New Mexico, Robert H. Weber and George S. Austin........... 97
Perlite in El Salvador, Central America, W. Lorenz and P. Müller... 103
Geology of the Ash Meadows clinoptilolite deposit, Inyo County, California, and Nye County, Nevada [abstract], K. N. Santini and A. R. Shapiro... 108
Barite beneficiation — modern mill design [abstract], Thomas J. Plouf... 108

Dispersed benefit riddle, James R. Dunn... 1
Geologic sources of construction materials in Indiana, Donald D. Carr and Curtis H. Ault.. 11
Sand and gravel resources of the Wabash Valley: Causes of variability, Gordon S. Fraser.. 27
Geology of some kaolinite deposits in Egypt, Omar R. El-Mahdy and Mohamed A. El-Askary.. 43
Geology of aggregate resources of Illinois, Jonathan H. Goodwin and John M. Masters.. 61
Geology and characteristics of building limestones of Kansas, David A. Grisafe.. 91
Geologic and economic evaluation of building and decorative stone resources in Michigan, Allan M. Johnson.. 113
Geology of construction materials in Kentucky, Preston McGrain.. 127
A geological sketch — construction materials in Ohio, David A. Stith and Robert G. Van Horn.. 143
Present and future industrial-mineral resources in Virginia, Palmer C. Sweet.. 157
Sand and gravel and crushed stone in the Midwest, Valentin V. Tepordei.. 173
Expansion and weathering of brick, R. E. Hughes, B. L. Bargh, and W. A. White.. 183
Use of marginal and waste materials in highway construction — an overview, Quentin L. Robnett.. 199
Relationship between insoluble residue content and pore characteristics for carbonate aggregates, Abdul Shakoor and Terry R. West.. 213

12
Compensating for adverse operating conditions in a karstic limestone deposit, Robert S. Cathcart

Optimum usage of stone resources, Ridgemount Quarry, Fort Erie, Ontario, A. J. Cooper and R. Plewman

Underground mining for aggregate, R. L. Loofbourow

Geology of Ontario, O. L. White... 1
Industrial minerals of northern Ontario, M. A. Vos et al. 9
Ontario industrial minerals for Ontario in the 1980s, G. Minnes.................. 13
Structural industrial minerals in Ontario, D. Scott.................................. 20
Mineral aggregates in Ontario legislation, policy and rehabilitation, S. E. Yundt 33
Talc -- the "unique" industrial mineral, D. K. Taylor and C. J. Parmentier........ 43
Steep Rock Calcite -- a division of Steep Rock Resources Inc., G. E. Wood...... 46
Geology, mining and processing of nepheline syenite, D. D. MacGregor............. 49
Lime in Ontario, R. A. Knebel... 54
The role of industrial minerals in Canada from a policy point of view, C. G. Miller 60
Aggregates -- the often maligned and often forgotten industrial mineral, D. G. Vanderveer 65
Gypsum in Atlantic Canada, W. L. Lewis & M. Hollerman............................ 79
Dimension stone of Quebec: geological aspects of commercial granite deposits, S. Nantel 96
Mica -- profits and problems, G. C. Hawley... 109
The Quebec and Ontario silica operations of Indusmin Limited, P. C. Coltas........ 118
The silica resources of Manitoba, D. M. Watson....................................... 122
Potash in Canada, with special emphasis on Saskatchewan potash deposits, G. McLaughlin 128
Setting the scene for aggregate resource management in Alberta, W. A. D. Edwards and R. B. Hudson 136
Industrial minerals in British Columbia, past, present and future development potential, Z. D. Hora 144
Industrial minerals as world travellers, P. W. Harben................................ 148
Arkansas Novaculite: Indians, whetstones, plastics and beyond, C. T. Stewart et al 156
Mining the silica sands of west Tennessee, M. Zdunczyk............................. 168
The geology of industrial minerals and rocks in China, Z. W. Huang.................. 175
Practical procedures for siting crushed stone quarries, B. K. Fowler.................... 180
Search for skid resistant aggregates in Ontario, C. Rogers.......................... 185
Computer-aided mine planning, G. M. Banino and W. K. Crist................. 206
Economic potential of various sandstone units within the Nubian Sequence: examples from Israel, T. Minster 209
Guidebook for Field Trips. Ontario Geological Survey

Field Trip A, Talc and nepheline syenite,
D. G. Minnes, W. J. Logan, and E. V. Sado.................... 5
Field Trip B, Aggregates, Stone, and Glass,
D. W. Scott and S. E. Yundt............................. 23

20. Twentieth Forum on the Geology of Industrial Minerals. Focus:
Industrial Minerals of the Mid-Atlantic States. Maryland

Maryland's mineral resources: past, present, and potential,
Karen R. Kuff.. 3
Industrial and miscellaneous silica resources in Virginia,
Palmer C. Sweet... 11
Pennsylvania's slate industry: alive and well,
Samuel W. Berkheiser, Jr.. 23
Cement production and related raw material consumption in the
Middle Atlantic States, Wilton Johnson...................... 35
Geology and mining of gypsum in Virginia, Roger D. Sharpe...... 41
Maryland's carbonate rocks: alpha and omega, Robert V. Demicco... 51
Nonfuel mineral industry in Virginia, Palmer C. Sweet............ 59
The chromite industry of Maryland, past and future, J. R. Brooks.. 69
Rates of preemption of sand and gravel deposits in the urban area,
Karen R. Kuff.. 73
Industrial minerals of New York State, William M. Kelly........... 81
Limestone resources for the coal industry: an evaluation of the
Newman Limestone on the Cumberland Overthrust Block, south-
eastern Kentucky, Garland R. Dever, Jr., Jack R. Moody, and
Thomas L. Robl... 87
Non-metallic mineral deposits of alpine peridotite-serpentinite
bodies, E. Wm. Heinrich................................... 95
Geology of sodium sulfate deposits of the northern Great Plains,
Laurie A. Slezak and William M. Last.......................... 105
Refractory dolomite production in a geologically complex area,
David A. Hopkins... 117
Urban encroachment on dolomite resources of the Chicago area,
Illinois, Donald G. Mikulic and Jonathan H. Goodwin........... 125
Potential markets of lime and limestone in sulfur control,
Subhash B. Bhagwat.. 133
The environmental geology of Glasgow, Scotland - a legacy of urban
surface and subsurface mining, M. A. E. Browne and J. H. Hull.. 141

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining and environmentalism -- finding common goals,</td>
<td>1</td>
</tr>
<tr>
<td>James R. Dunn</td>
<td></td>
</tr>
<tr>
<td>Geologic setting of industrial rocks and minerals in Arizona,</td>
<td>9</td>
</tr>
<tr>
<td>Stephen J. Reynolds and H. Wesley Peirce</td>
<td></td>
</tr>
<tr>
<td>Industrial minerals and rocks of Arizona, H. Wesley Peirce</td>
<td>17</td>
</tr>
<tr>
<td>Industrial minerals of Nevada, Keith G. Papke</td>
<td>24</td>
</tr>
<tr>
<td>Industrial minerals of Utah, Bryce T. Tripp</td>
<td>31</td>
</tr>
<tr>
<td>The geology of cement raw materials - Pacific Southwest,</td>
<td>37</td>
</tr>
<tr>
<td>S. A. Kupferman</td>
<td></td>
</tr>
<tr>
<td>Geologic-setting and operations overview, Lucerne Valley limestone</td>
<td>44</td>
</tr>
<tr>
<td>mining district, Lucerne Valley, California, Howard J. Brown.</td>
<td></td>
</tr>
<tr>
<td>Natural lightweight aggregates of the Southwest, Dennis Bryan</td>
<td>55</td>
</tr>
<tr>
<td>Acquisition of Federally owned industrial minerals, Terry S. Maley</td>
<td>64</td>
</tr>
<tr>
<td>Mining industrial minerals on Arizona State Trust Lands,</td>
<td>81</td>
</tr>
<tr>
<td>Edward C. Spalding</td>
<td></td>
</tr>
<tr>
<td>Minerals and health: the asbestos problem, Malcolm Ross</td>
<td>83</td>
</tr>
<tr>
<td>A comparison of selected zeolite deposits of Arizona, New Mexico,</td>
<td>90</td>
</tr>
<tr>
<td>and Texas, Mark R. Bowie, James M. Barker, and</td>
<td></td>
</tr>
<tr>
<td>Stephen L. Peterson</td>
<td></td>
</tr>
<tr>
<td>Geology and industrial uses of Arizona’s volcanic rocks,</td>
<td>106</td>
</tr>
<tr>
<td>John W. Welty and Jon E. Spencer</td>
<td></td>
</tr>
<tr>
<td>Locating, sampling, and evaluating potential aggregate deposits,</td>
<td>116</td>
</tr>
<tr>
<td>Leo Langland</td>
<td></td>
</tr>
<tr>
<td>Solar salt in Arizona, Jerry Grott</td>
<td>120</td>
</tr>
<tr>
<td>Bentonite and specialty sand deposits in the Bidahochi Formation,</td>
<td>123</td>
</tr>
<tr>
<td>Ted H. Eyde and Dan T. Eyde</td>
<td></td>
</tr>
<tr>
<td>Mexico's industrial minerals, Joaquin Ruiz and Edmundo Berlanga</td>
<td>128</td>
</tr>
<tr>
<td>Approach to locating high-quality aggregates in the Basin - Range</td>
<td>129</td>
</tr>
<tr>
<td>Province, James R. Miller, G. Ramanjaneya, and Gerald Allen</td>
<td></td>
</tr>
<tr>
<td>Geologic evaluation of the southern portion of Searles Lake,</td>
<td>130</td>
</tr>
<tr>
<td>California, K. N. Santini</td>
<td></td>
</tr>
<tr>
<td>Raw materials and the manufacture of vitrified clay pipe in Arizona,</td>
<td>131</td>
</tr>
<tr>
<td>Don Morris</td>
<td></td>
</tr>
<tr>
<td>The Bowie chabazite deposit, Ted H. Eyde and Dan T. Eyde</td>
<td>133</td>
</tr>
<tr>
<td>Arizona Portland Cement Company's Rillito operation,</td>
<td>134</td>
</tr>
<tr>
<td>J. W. Rains</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some thoughts on our mineral future, Eugene N. Cameron</td>
<td>1</td>
</tr>
<tr>
<td>Mineral raw materials for flat glass manufacturing,</td>
<td>11</td>
</tr>
<tr>
<td>F. D. Huntley and R. R. Snow</td>
<td></td>
</tr>
<tr>
<td>Cause and effect of jointing in quarries in central and northern</td>
<td>17</td>
</tr>
<tr>
<td>Indiana, Curtis H. Ault</td>
<td></td>
</tr>
<tr>
<td>The cement industry and cement raw materials in Texas,</td>
<td>31</td>
</tr>
<tr>
<td>Mary W. McBride</td>
<td></td>
</tr>
</tbody>
</table>
Virginia's lime industry, Palmer C. Sweet... 37
Tectonically emplaced serpentinites of the Benton uplift, Saline
County, Arkansas, Timothy L. Cox.. 49
Quartz crystal deposits of the Ouachita Mountains - Arkansas and
Oklahoma, J. Michael Howard and Charles G. Stone....................... 63
Prairie Creek kimberlite (lamproite), L. G. Krol................................ 73
Barite deposits in Arkansas, A. Wallace Mitchell............................. 77
General geology and mineral resources of the Ouachita Mountains,
Arkansas, Charles G. Stone and William V. Bush............................. 87
The marbles of Nepal: a preliminary report on the Godavari marble
deposit, southwestern Kathmandu Valley, Nepal,
John H. Gray and Arthur J. Pyron.. 107

Abstracts
Industrial sand, John Cooke... 112
Getting into industrial minerals: facing the realities,
David H. Holmes and Ken Santini.. 112
Natural zeolites as a commodity: have they arrived yet?,
David A. Holmes... 112
Carbonatite and alnoite of north-central Arkansas: diamonds in
Pope County?, Ellen Mullen Morris... 112
Metagabbros of the Ouachita core, Arkansas and Oklahoma,
Ellen Mullen Morris and Charles G. Stone.................................... 113
Petrology and geochemistry of Granite Mountain syenites,
Ellen Mullen Morris... 113
Weyerhaeuser gypsum operation - Briar plant and mine,
Larry P. Renard.. 114
The hard and soft of it: uses of Arkansas novaculite,
Charles T. Steuart... 114
Arkansas production of mineral resources with emphasis on industrial
minerals and rocks, Raymond B. Stroud... 115
Industrial garnet production from north Idaho placers,
Arthur D. Zierold.. 115

23. Proceedings of the 23rd Forum on the Geology of Industrial

Keynote address: Industrial Minerals Research, Ralph Grim........... 1
The current state of industrial minerals in China, Fred Barnard...... 5
Geology of six Kentucky carbonates; sulfur sorbents for AFBC,
Lance S. Barron, Garland R. Dever, Jr., and Thomas L. Robl........ 11
Possible underground mining of limestone and dolomite in central
Illinois, James W. Baxter... 21
Model of construction aggregates demand and supply: a Chicago area
case study, Subhash B. Bhagwat.. 29
Industrial sand in Indiana, Donald D. Carr, Curtis H. Ault, and
Todd A. Thompson... 35
Depositional environments of natural-aggregate reserves, Osseo
District, Twin Cities Metropolitan Area, Minnesota,
Rudolph K. Hoagberg... 41
Evaluation of the economic usefulness of earth materials by x-ray
diffraction, Randall E. Hughes and Robin L. Warren..................... 47
The history, geology, and future of industrial clays in Illinois, Randall E. Hughes, W. Arthur White, and Robin L. Warren. 59
Effects of rock types in Illinois gravels on freeze-thaw test beams, John M. Masters. 71
The Chicago stone industry: a historical perspective, Donald G. Mikulic. 83
An overview of the geology of clays, shales, and slates utilized in ceramic and structural clay products in Georgia, Bruce J. O'Connor. 91
Industrial minerals and the CUSMAP program, A. W. Rueff. 97
Silica sands: grassroots exploration or acquisitions, Mark J. Zdunczyk. 101
Reserve evaluation and planning on an IBM personal computer [abstract], George F. Swindle. 105

A central Indiana model for predicting jointing characteristics in underground limestone mines, Curtis H. Ault and Andrew F. Haumesser. 1
Occurrence and exploitation of ore deposits in the Shady Dolomite, Cartersville Mining District, Georgia, Stan D. Bearden. 9
Celestite resources of Mexico, Stan D. Bearden. 13
Lamproites in southeast Kansas and their industrial uses, Pieter Berendsen. 17
Ball clays, weathering and climate, Colin Bristow. 25
The potential for heavy minerals in the Lilesville, North Carolina sand and gravel deposits, John E. Callahan and James R. Craig. 39
Geology of the Neisler mine, KMG Minerals Inc., and the mica-bearing pegmatites in the area southwest of Kings Mountain, North Carolina, John M. Conor. 45
Potential uses of the material to be excavated from the proposed Superconducting Super Collider site in Illinois, Lucille M. Curran and John M. Masters. 49
Economic considerations in the developing nations and their impact on trade in industrial minerals, Henry N. McCarl. 71
Mineralogy, origin and evaluation of talc deposits near Pacolet Mills, South Carolina, Steven K. Mittwede. 75
Thrust sheets and mineral resources in the Greenville 1°x2° quadrangle, South Carolina, Georgia and North Carolina, Arthur E. Nelson, J. Wright Horton, Jr., Frank G. Lesure, Henry Bell, III and Gary C. Curtin. 83
The industrial rocks and minerals in Georgia - an overview, Bruce J. O'Connor. 95
North Carolina State University's Research Laboratory in Asheville, NC and work with the industrial mineral industry in the southeastern United States, Immo H. Redeker. 111
The Hallman-Beam spodumene pegmatite mine, Lithium Corporation of America, Raymond P. Spanjers... 115

Fuller's earth deposits in Florida and southwestern Georgia, Steven M. Spencer, Frank R. Rupert and J. William Yon........... 121

Present and future dimension stone industry in Virginia, Palmer C. Sweet... 129

Caught with your aggregates down, Bobby J. Timmons...................... 137

Ball clay in the United States, Doss H. White, Jr. 145

Abstracts

Exploration and evaluation of granite (dimension stone) in the southeastern United States, Robert H. Carpenter and R. Lee Aston... 149

Industrial minerals of the Pacific Northwest, Ronald P. Geitgey... 149

Distribution of heavy minerals in surficial sediments of the inner Atlantic continental shelf offshore of Myrtle Beach, South Carolina, Andrew E. Grosz and Douglas D. Nelson........ 150

Current PC computer applications for industrial minerals operations, M. Eugene Hartley... 150

Mine regulation permitting in South Carolina, R. Craig Kennedy.... 151

The kaolin industry of Georgia and South Carolina, William M. Mallory... 151

Geologic considerations in the crushed stone industry as applied to select Martin Marietta quarries of South Carolina, Steven L. McKeel... 152

Sampling and testing for dimension stone usage, Lance Meade...... 152

Brick industry of South Carolina, Jody Patrick, Jr. 153

Industrial implications of kaolin clay stratigraphy in Georgia, Sam M. Pickering, Jr., Harold L. Webb, and Harold W. Dailey... 153

Mineralization in the St. Peter Sandstone detrimental to foundry sand use, Steven J. Stokowski, Jr. ... 154

The history of industrial mineral use in South Carolina, Alan-Jon W. Zupan... 154

Industrial minerals in Oregon, Ronald P. Geitgey........................ 1

Limestone deposits in Oregon, Howard C. Brooks....................... 8

Talc and soapstone in Oregon, M. L. Ferns.................................. 11

Oregon bentonite, Jerry J. Gray... 14

Developments in applications for southeast Oregon bentonites and natural zeolites, Dave Leppert... 19

Industrial minerals in Washington--1988: Production and potential, Nancy L. Joseph................................. 24

Montana's industrial minerals, Richard B. Berg.......................... 37
Industrial minerals in British Columbia: Present producers and further development opportunities, Z. D. Hora.............. 45
Overview of the impact on the perlite industry of the IARC classification of crystalline silica as a Group 2A (probable) carcinogen in humans, James M. Barker and Christopher McKee... 51
Practices and problems of perlite expansion and testing at the New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico, James M. Barker................................. 63
Pozzolans of the Northwest: Natural versus artificial, Jenny Flechsig... 69
Rare earth resources: Comparisons of the geology of existing and potential resources, Stephen B. Castor...................... 73
Pacific Northwest zeolite update, David A. Holmes.................. 79
Problems in mineral products testing, Edwin H. Bentzen III....... 89
1990 Forum on the Geology of Industrial Minerals: Virginia, Palmer Sweet.. 92
SUBJECT INDEX

Numbers in **bold face** refer to Proceedings volumes.

<table>
<thead>
<tr>
<th>topic</th>
<th>authors and pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>acid mine drainage</td>
<td>Deul 10, 43-46</td>
</tr>
<tr>
<td></td>
<td>Ford 10, 30-42</td>
</tr>
<tr>
<td></td>
<td>Hill 10, 25-29</td>
</tr>
<tr>
<td>adobe bricks</td>
<td>Smith, E.W. 17, 49-56</td>
</tr>
<tr>
<td>AFBC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barron et al. 23, 11-20</td>
</tr>
<tr>
<td>aggregates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See also crushed stone; sand and gravel</td>
</tr>
<tr>
<td></td>
<td>Aughenbaugh and Lounsbury 1, 179-187</td>
</tr>
<tr>
<td></td>
<td>Bhagwat 23, 41-45</td>
</tr>
<tr>
<td></td>
<td>Biggs 2, 101-110</td>
</tr>
<tr>
<td></td>
<td>Carr and Ault 18, 11-25</td>
</tr>
<tr>
<td></td>
<td>Bryan 21, 55-63</td>
</tr>
<tr>
<td></td>
<td>Cutcliffe 5, 105-117</td>
</tr>
<tr>
<td></td>
<td>------- and Dunn 3, 39-44</td>
</tr>
<tr>
<td></td>
<td>Dunn, J.R. and Hudec 1, 153-168</td>
</tr>
<tr>
<td></td>
<td>Edwards, W.A.D. and Hudson 19, 136-143</td>
</tr>
<tr>
<td></td>
<td>Goodwin and Masters 18, 61-90</td>
</tr>
<tr>
<td></td>
<td>Hoagberg 23, 41-45</td>
</tr>
<tr>
<td></td>
<td>Hole 6, 77-80</td>
</tr>
<tr>
<td></td>
<td>Hudec 5, 165-177</td>
</tr>
<tr>
<td></td>
<td>------- et al. 6, 87-94</td>
</tr>
<tr>
<td></td>
<td>Klosterman 5, 233-241</td>
</tr>
<tr>
<td></td>
<td>Kneeller, W.A. 1, 191; 3, 110</td>
</tr>
<tr>
<td></td>
<td>Langland 21, 116-119</td>
</tr>
<tr>
<td></td>
<td>Loofbourow 18, 245-251</td>
</tr>
<tr>
<td></td>
<td>Mackie 15, 42-46</td>
</tr>
<tr>
<td></td>
<td>McGrain 18, 127-142</td>
</tr>
<tr>
<td></td>
<td>Miller, J.R. et al. 21, 129</td>
</tr>
<tr>
<td></td>
<td>Osborne and Young 14, 53</td>
</tr>
<tr>
<td></td>
<td>Ozol 2, 111-128</td>
</tr>
<tr>
<td></td>
<td>Rogers, C. 19, 185-205</td>
</tr>
<tr>
<td></td>
<td>Schwochow 15, 29-41</td>
</tr>
<tr>
<td></td>
<td>Segall 6, 117-126</td>
</tr>
<tr>
<td></td>
<td>Shakoor and West 18, 213-222</td>
</tr>
<tr>
<td></td>
<td>Stallard 3, 7-9</td>
</tr>
<tr>
<td></td>
<td>Stith 6, 81-86</td>
</tr>
<tr>
<td></td>
<td>------- and Van Horn 18, 143-155</td>
</tr>
<tr>
<td></td>
<td>Timmons 16, 29-32; 24, 137-143</td>
</tr>
<tr>
<td></td>
<td>Vanderweer 19, 65-78</td>
</tr>
<tr>
<td></td>
<td>White, O.L. 15, 23-28</td>
</tr>
<tr>
<td></td>
<td>Wilband and Kneller 3, 111-119</td>
</tr>
<tr>
<td></td>
<td>Yundt 15, 11-22; 19, 33-42</td>
</tr>
<tr>
<td>Alabama</td>
<td>Jones 7, 23-28</td>
</tr>
<tr>
<td>Alberta</td>
<td>Broughton 11, 7-15</td>
</tr>
<tr>
<td></td>
<td>Edwards and Hudson 19, 136-143</td>
</tr>
<tr>
<td></td>
<td>Hamilton 11, 17-35</td>
</tr>
<tr>
<td></td>
<td>Holton 11, 37-50</td>
</tr>
<tr>
<td>alnoite</td>
<td>Morris, E.M. 22, 112-113</td>
</tr>
<tr>
<td>alumina</td>
<td>Baker 12, 16-24</td>
</tr>
<tr>
<td>aluminum</td>
<td>Hall 15, 77-88</td>
</tr>
<tr>
<td>alunite</td>
<td>Hall 15, 77-88</td>
</tr>
<tr>
<td>apatite</td>
<td>Goudarzi et al. 7, 117-138</td>
</tr>
<tr>
<td>architectural concrete</td>
<td>Cutcliffe and Dunn 3, 39-44</td>
</tr>
<tr>
<td></td>
<td>Stith 6, 81-86</td>
</tr>
<tr>
<td>Arizona</td>
<td>Bowie et al. 21, 90-105</td>
</tr>
<tr>
<td></td>
<td>Eyde, T.H. 17, 65-71</td>
</tr>
<tr>
<td></td>
<td>------- and Eyde 21, 123-127</td>
</tr>
<tr>
<td></td>
<td>Grott 21, 120-122</td>
</tr>
<tr>
<td></td>
<td>Morris, D. 21, 131-132</td>
</tr>
<tr>
<td></td>
<td>Peirce 21, 17-23</td>
</tr>
<tr>
<td></td>
<td>Rains 21, 134</td>
</tr>
<tr>
<td></td>
<td>Reynolds and Peirce 21, 9-16</td>
</tr>
<tr>
<td></td>
<td>Spalding 21, 81-82</td>
</tr>
<tr>
<td></td>
<td>Welty and Spencer 21, 106-115</td>
</tr>
<tr>
<td>Arkansas</td>
<td>Burton and Gale 16, 61</td>
</tr>
<tr>
<td></td>
<td>Carpenter, A.B. and Trout 13, 78-88</td>
</tr>
<tr>
<td></td>
<td>Cox 22, 49-61</td>
</tr>
<tr>
<td></td>
<td>Holbrook and Stone 13, 51-58</td>
</tr>
<tr>
<td></td>
<td>Howard and Stone 22, 63-71</td>
</tr>
<tr>
<td></td>
<td>Krol 22, 73-75</td>
</tr>
<tr>
<td></td>
<td>Mitchell, A.W. 22, 77-86</td>
</tr>
<tr>
<td></td>
<td>Morris, E.M. 22, 112-113, 113-114</td>
</tr>
<tr>
<td></td>
<td>------- and Stone 22, 113</td>
</tr>
<tr>
<td></td>
<td>Renard 22, 114</td>
</tr>
<tr>
<td></td>
<td>Steuart 22, 114</td>
</tr>
<tr>
<td></td>
<td>------- et al. 19, 156-167</td>
</tr>
<tr>
<td></td>
<td>Stone, C.G. and Bush 22, 87-106</td>
</tr>
<tr>
<td></td>
<td>Stroud 22, 115</td>
</tr>
<tr>
<td>asbestos</td>
<td>Buyce & Dunn 14, 34-39</td>
</tr>
<tr>
<td></td>
<td>Heinrich 20, 95</td>
</tr>
<tr>
<td></td>
<td>Ross 21, 83-89</td>
</tr>
<tr>
<td></td>
<td>------- and Stone 22, 133</td>
</tr>
</tbody>
</table>
Atlantic coastal plain
Adams 7, 211-216
Cathcart, J.B. 4, 23-34
Olson, N.K. 5, 3-22
Atlantic continental shelf
Gross and Nelson 24, 150
attapulgite
Weaver and Beck 7, 51-90

ball clay
Bristow 24, 25-37
White, D.H., Jr. 24, 145-147

barite
Brobst 16, 77
Burton and Gale 16, 61
Duewel and McFarlane 16, 71-76
Heyl 9, 55-57
Mitchell, A.W. 22, 77-86
Plouf 17, 108
Sikich 16, 63-69
Smith, T.J. 17, 61-63
Wharton 8, 107-119

bauxite
Jones 7, 23-28

beneficiation
Ames 1, 131-136
Bowdish 3, 126-131

Benton uplift
Cox 22, 49-61

bentonite
Beatty 11, 85-92
Eythe and Eyde 21, 123-127
Gray, J.J. 25, 14-18
Leppert 25, 19-23
Patterson 7, 37-49

Black Hills
Hoagberg and Edwards 14, 87-96

blasting
Bolton 14, 119

Brazil
Goudarzi et al. 7, 117-138

brick
Hughes et al. 18, 183-197
Patrick 24, 153

brines
Angino 3, 120-124
Carpenter, A.B 13, 60-67
---------- and Trout 13, 78-88
Collins 13, 95-98
Dang and Steinberg 13, 99-107
Ives 6, 4
McIlhenny 4, 35-44
Santini 21, 130

British Columbia
Danner 11, 157-169, 171-186
Hora 19, 144-147; 25, 45-50

building stone
Carpenter, R.H. and Aston 24, 149
Fickies and Dineen 14, 13-20
Grisafe 18, 19-112
Johnson, A.M. 18, 113-126
Meade 24, 152
Nantel 19, 96-108
Smith, N.M. 1, 168-179
Sweet 24, 129-135

calcite
Wood, G.E. 19, 46-48

California
Brown, H.J. 21, 44-54
Runvik 8, 159-183
Santini 21, 130
---------- and Shapiro 17, 108
Taylor, C.L. 14, 81-86

Canada
Heinrich 14, 106-112
Lewis, W.L. and Holleman 19, 79-95
McLaughlin 19, 128-135
Miller, C.G. 19, 60-64

cap rock
Taylor, R.E. 4, 69-79

carbonatite
Morris, E.M. 22, 112-113

celestite
Bearden 24, 13-15

cement raw materials
Allen, H. 16, 1-3
Anderson, Richard J. 2, 167-172
Banino 14, 65-69
Bates, R.L. 2, 23-29
Bobrowski 2, 149-154
Brown, S.P. 1, 123-130
Burleson 15, 8-10
Everett 3, 156-161
Johnson, W. 20, 35-39
Kupferman 21, 37-43
Lamar and Harvey 2, 45-71
Mallette 2, 163-166
Martin, N.W. and Gibson 2, 91-100
McBride 22, 31-36
McGrain and Dever 2, 31-44
Mitchell, R. 2, 155-162
Rains 21, 134
Rooney 2, 13-21
Schenck and McCarl 1, 137-145
Weaver, K.W. 2, 1-11
Wheeler 3, 76-96
Wollenberg and Smith 2, 129-147
central-place theory
Fakundiny 14, 40-52
ceramic raw materials
Hart 15, 51-52
O'Connor 23, 91-95
Pentecost 12, 57-58
chabazite
Eyde and Eyde 21, 133
chalk
Harvey et al. 10, 67-80
desulfurization
Frazier et al. 10, 81-89
chemical industry
Arbingast 4, 95-98
chemicals from the sea
McIlhenny 4, 35-44
chert
Kneller, W.A. 1, 191; 3, 110
Wilband and Kneller 3, 111-119
Chicago area
Bhagwat 23, 29-34
Mikulic 23, 83-89
China
Barnard 23, 5-10
Huang 19, 175-179
chromite
Brooks 20, 69-72
clay
Bryan 21, 55-63
classification
Dunn, J.R. 8, 185-189, chart
clays
See also ball clay; bentonite; kaolin
Carver 7, 91-101
Golson 15, 75-76
Hughes et al. 23, 59-70
McCormick 8, 23-35
Morris, D. 21, 131-132
Nordwald 16, 53-57
O'Connor 23, 91-95
Sorensen 6, 143-155
Spence 15, 47-50
Steffen 8, 37-42
Tourtelot and Boernge 16, 59
Wahl and Timmons 7, 109-116
clinoptilolite
Santini and Shapiro 17, 108
coal industry
Dever et al. 20, 87-93
Colorado
Farris 15, 96-104
crushed stone
See also aggregates
Atkins and Power 12, 6-9
Buyce and Dunn 14, 34-39
Cooper, A.J. and Plewman 18, 231-244
Fowler 19, 180-184
Heagler 16, 15
McKeel 24, 152
Mikulic 23, 83-89
Wilband and Kneller 3, 111-119
CUSMAP program
Rueff 23, 97-100
dawsonite
Farris 15, 96-104
dead sea
Carpenter, A.B. and Trout 13, 78-88
Deer Creek Marsh
Trautwein and Dragonetti 14, 27-31
depositional models
McGowen 4, 157-174
desulfurization
Bhagwat 20, 133-139
Crowe 10, 53-58
Drehmel and Harvey 10, 59-66
Frazier et al. 10, 81-89
Lewis 10, 90-93
Minnick 10, 94-100
Grogan et al. 9, 4-9
Heyl 9, 55-57
Hook 9, 77-86
Mason 9, 10-22
Montgomery 9, 1-3
Moodie and McGrain 9, 96-107
Pickard 9, 23-30
Tibbs 9, 87-95
Trace 9, 58-76
Worl 9, 31-54
oliated rocks
Ozol 2, 111-128
foundry sand
Stokowski 24, 154
fuller's earth
Patterson 7, 37-49
Spencer, S.M. et al. 24, 121-127
garnet
Zierold 22, 115
gem materials
Danner 11, 157-169
general papers
Bates, R.L. 1, 98-100
Bourne 6, 138-141
Brobst 12, 1-5
Cameron 22, 1-10
Campbell 3, 2-6
Ducharme 3, 132-137
Dunn, J.R. 18, 1-9; 21, 1-8
----- and Wallace 5, 153-163
Grim 23, 1-4
Harben 19, 148-155
Holmes and Santini 22, 112
McCarl 24, 71-73
Mcade 5, 225-231
Patton 4, 3-6
Rooney 6, 2-3; 8, 1-4
Rueff 23, 97-100
Smith, G.I. 5, 141-152
Vernon 7, 1-3
geochemistry
Galle 3, 97-109
Maybin and Carpenter 24, 57-69
geometry of deposits
Bates, R.L. 3, 45-50
Georgia
Atkins and Power 12, 6-9
Austin, R.S. 12, 10-15
Bearden 24, 9-12
Carver 7, 91-101
Furlow 7, 227-228
Harding and Noakes 12, 37-43
Iannicelli 12, 44-53
Nelson et al. 24, 83-93
O'Connor 23, 91-95; 24, 95-110
Pickering et al. 24, 153
Power 12, 59-68
Spencer, S.M. et al. 24, 121-127
glass raw materials
Bentzen 15, 63-74
Huntley and Snow 22, 11-16
Kephart 8, 11-15
Olson, N.K. 5, 3-22
Shufflebarger 13, 25-35
granite
Atkins and Power 12, 6-9
Wantel 19, 96-108
Granite Mountain syenites
Morris, E.M. 22, 113-114
gravel
See sand and gravel
Great Lakes
Callender 6, 56-65
ground vibration control
Bolton 14, 119
Gulf Coast
Arbingast 4, 95-98
Cathcart, J.B. 4, 23-34
Eifler 4, 45-56
Hardin 4, 67
Hawkins and Wood 4, 7-22
Muehberger and Clabaugh 4, 81-89
Myers, J.C. 4, 57-65
Scott, A.J. 4, 129-150
Taylor, R.E. 4, 69-79
gypsum
Briggs 6, 66-76
----- and Zigic-Toschich 4, 99-116
Dorheim 2, 73-82
Johnson, K.S. 13, 6-14
Jorgensen 13, 1-5
-------- and Carr 8, 43-65
Kiehl 13, 15-19
Lewis, W.L. and Holleman 19, 79-95
Logsdon 17, 43-48
Renard 22, 114
Sendlein 8, 67-87
Sharpe 20, 41-49
Sweeney and Timmons 8, 89-97
Westphal 13, 20-24
heavy minerals
Callahan and Craig 24, 39-44
Garnar 7, 17-21; 12, 25-36
Gross and Nelson 24, 150
Stone and Force 14, 57-64
humic acid complexes
Broughton 8, 135-158
Idaho
Bennett et al. 25, 31-36
Zierold 22, 115
Illinois
N尽快 23, 21-28
Bhagwat 23, 29-34
Curran and Masters 24, 49-56
Goodwin and Masters 18, 61-90
Hook 9, 77-86
Hughes et al. 23, 59-70
Lamar and Harvey 2, 45-71
Masters 23, 71-81
Mikulic and Goodwin 20, 125-131
Trace 9, 58-76
image analysis
Harvey and Steinmetz 7, 161-170
Indiana
Aughenbaugh and Lounsbury 1,
179-187
Ault 22, 17-29
and Haumesser 24, 1-8
Carr and Ault 18, 11-25
-----, Ault and Thompson 23,
35-40
-----, French and Blakely 6,
127-137
Fraser 18, 27-42
Jorgensen and Carr 8, 43-65
Rooney 1, 101-110; 2, 13-21
----- and Ault 5, 179-224
Smith, N.M. 1, 168-179
Webb 5, 23-42
iodine
Cotten 13, 89-94
Iowa
Dorheim 2, 73-82
McCormick 8, 23-35
Myers, J.D. 8, 17-21
Sendlein 8, 67-87
Israel
Minster 19, 209-216
jointing
Ault 22, 17-29
----- and Haumesser 24, 1-8
Kansas
Berendsen 24, 17-24
Grisafe 18, 91-112
Hess 3, 177-183
Stallard 3, 7-9
kaolin
Austin, R.S. 12, 10-15
Buie 7, 103-107
El-Mahdy and El-Askary 18, 43-60
Iannicelli 12, 44-53
Pickering et al. 24, 153
Scott, D. 19, 20-32
karst
Cathcart, R.S. 18, 223-229
Kentucky
Barron et al. 23, 11-20
Carr, French and Blakely 6,
127-137
Dever and McGrain 7, 171-179
-----, Moody and Robl 20, 87-93
Hook 9, 77-86
McGrain 18, 127-142
----- and Dever 2, 31-44
Moodie and McGrain 9, 96-107
Tibbs 9, 87-95
Trace 9, 58-76
kimberlites
Hausel and McCallum 15, 106-115
Krol 22, 73-75
kyanite
Radcliffe 12, 69-78
lamproite
Berendsen 24, 17-24
Krol 22, 73-75
langbeinite
Rempe 17, 23-26
legislation
See also mining law
Coates 6, 5-14
Fields 7, 5-8
Schwochow 15, 29-41
Yundt 19, 33-42
Libya
Goudarzi 17, 27-30
lightweight aggregates
Bryan 21, 55-63
Mackie 15, 42-46
lignite
Broughton 8, 135-158
Schwartz 3, 26-31
lime
Bhagwat 20, 133-139
mine regulation permitting
 Kennedy 24, 151
mineral well act
 Ives 6, 4
mines oils
 Smith, R.M. et al. 10, 47-52
mining law
 See also legislation
 Regis 14, 1-2; 15, 1-7
Minnesota
 Hoagberg 23, 41-45
 Hogberg 4, 151-156
 Odom et al. 6, 37-47
Missouri
 Martin and Wharton 3, 162-176
 Nordwald 16, 53-57
 Quirk and Bates 13, 47-50
 Shefchik et al. 16, 13
 Spreng 16, 5-11
 Wharton 8, 107-119
 Whitfield 16, 43-52
Montana
 Berg 25, 37-44
 Olson, R.H. 11, 99-143

nahcolite
 Farris 15, 96-104
 Nielsen 15, 89-95
Nepal
 Gray and Pyron 22, 107-111
nepheline syenite
 MacGregor 19, 49-53
Nevada
 Duewel and McFarlane 16, 71-76
 Papke 21, 24-30
 Santini and Shapiro 17, 108
 Vitaliano and Cleveland 2, 173-197
New Mexico
 Asher-Bolinder 17, 73-76
 Austin, G.S. et al. 17, 9-16
 Barker and Harris 25, 63-68
 Bowe et al. 21, 90-105
 Evelth 17, 31-33
 Eyde, T.H. 17, 65-71
 Griswold 17, 17-22
 Logsdon 17, 43-48
 Osburn 17, 57-59
 Siemers 17, 39-42
 Smith, E.W. 17, 49-56
 Smith, T.J. 17, 61-63
 Weber and Austin 17, 97-101
 Whitson 17, 89-95
New York
 Brown, C.E. 14, 97-105
 Brown, S.P. 1, 123-130
 Fakundiny 14, 40-52
 Fernau 14, 32-33
 Pickies and Dineen 14, 13-20
 Hudec 5, 165-177
 Kelly 20, 81-86
 Osborne and Toung 14, 53
 Stone and Force 14, 57-64
 Trautwein and Dragonetti 14, 27-31
North Carolina
 Callahan and Craig 24, 39-44
 Connor 24, 45-48
 Nelson et al. 24, 83-93
 Redeker 24, 111-113
novaculite
 Holbrook and Stone 13, 51-58
 Steuart 22, 114
 ------- et al. 19, 156-167
Ohio
 Bates, R.L. 2, 23-29
 Carr, French and Blakely 6, 127-137
 Herdendorf and Braidech 6, 103-116
 Stith 6, 81-86
 ------ and Van Horn 18, 143-155
oil shale
 Farris 15, 96-104
 Nielsen 15, 89-95
Oklahoma
 Gotten 13, 89-94
 Howard and Stone 22, 63-71
 Johnson, K.S. 13, 6-14
 Morris, E.M. and Stone 22, 113
 Quirk and Bates 13, 47-50
 Westphal 13, 20-24
Ontario
 Coates 6, 5-14
 Coltas 19, 118-121
 Cooper, A.J. and Plewman 18, 231-244
 Guillet 14, 21-26
 Knebel 19, 54-59
 Minnes 19, 13-19
 Rogers 19, 185-205
 Scott 19, 20-32
 Vos et al. 19, 9-12
 White, O.L. 15, 23-28; 19, 1-8
 Yundt 15, 11-22; 19, 33-42
opaline clays
Carver 7, 91-101
ore control
Fountain and Zellars 7, 187-193
ore reserves
Hazen 3, 138-151
Hoagberg and Edwards 14, 87-96
O'Neill 14, 113-118
Taylor, C.L. 14, 81-86
Oregon
Brooks 25, 8-10
Ferns 25, 11-13
Geitgey 25, 1-7
Gray, J.J. 25, 14-18
Leppert 25, 19-23
Ouachita Mountains
Howard and Stone 22, 63-71
Morris and Stone 22, 113
Stone and Bush 22, 87-106
oyster-shell deposits
Eifler 4, 45-56
Scott 4, 129-150
Pacific Northwest
Geitgey 24, 149
pegmatites
Connor 24, 45-48
Hoagberg and Edwards 14, 87-96
Spanjers 24, 115-119
Pennsylvania
Berkheiser 20, 23-33
Krueger 5, 91-103
O'Neill 14, 113-118
Sevon 5, 119-137
Swain et al. 1, 116-122
peridotite-serpentinite
Heinrich 20, 95-103
perlite
Barker and Harris 25, 63-68
------ and McKee 25, 51-62
Lorenz and Muller 17, 103-107
Weber and Austin 17, 97-101
Whitson 17, 89-95
petroleum outlook
Garland 13, 59
phosphates
Adams 7, 211-216
Cathcart, J.B. 4, 23-34
Congleton 7, 185-186
Fountain and Zellars 7, 187-193
Freas and Riggs 4, 117-128
Furlow 7, 227-228
Harding and Noakes 12, 37-43
Lowe 7, 217-226
Olson, N.K. 7, 195-210
Rhodes 11, 61-67
Runvik 8, 159-183
Sweeney 7, 9-11
------ and Timmons 8, 89-97
Weaver, J.L. 7, 181-184
phosphogypsum
Sweeney and Timmons 8, 89-97
photo interpretation
Stallard 3, 7-9
plate tectonics
Burke 14, 120
potash
Anderson and Egleson 6, 15-19
------ and Majeske 6, 34-36
Dunn, C.E. 11, 51-60
Goudarzi 17, 27-30
Griswold 17, 17-22
Hall 15, 77-88
Matthews 6, 20-33
McLaughlin 19, 128-135
Rempe 17, 23-26
pozzolanic materials
Everett 3, 156-161
Flechsig 25, 69-70
products testing
Bentzen 25, 89-91
public domain
Maley 21, 64-80
Malletta 2, 163-166
Regis 15, 1-7
Runvik 8, 159-183
pumice
Bryan 21, 55-63
pumped storage
Loofbourow 8, 121-129
quality control
Osborne and Torgov 14, 53
quarry blasting
Bolton 14, 119
quartz crystal
Howard and Stone 22, 63-71
Quebec
Coltas 19, 118-121
Nantel 19, 96-108
radioactivity
Wollenberg and Smith 2, 129-147
railroad geologist
Shrode 1, 110-115
rare earths
Castor 25, 73-78
Heinrich 15, 116-126
reclamation
Coates 6, 5-14
Hole 10, 1-5
Klosterman 5, 233-241
Schellie 10, 6-9
Shackleton and Roberts 10, 13-16
Sweeney 7, 9-11
Westphal 13, 20-24
Yundt 19, 33-42
remote sensing
Taranik 8, 99-105
reserves
See ore reserves
resource management
White, O.L. 15, 23-28
Yundt 15, 11-22
rock soundness
Dunn, J.R. and Hudec 1, 153-168
salt
See also evaporites
Briggs and Zigic-Toshich 4, 99-115
Grott 21, 120-122
Hardin 4, 67
Hawkins and Wood 4, 7-22
Muehlberger and Clabaugh 4, 81-89
salt domes
Muehlberger and Clabaugh 4, 81-89
Taylor, R.E. 4, 69-79
sampling methods
Herbert and Wingard 6, 95-102
sand
See sand and gravel; silica sand and sandstone
sand and gravel
Bates, R.L. 8, 5-10
Callahan and Craig 24, 39-44
Carr and Webb 3, 32-38
Fakundiny 14, 40-52
Fernau 14, 32-33
Fraser 18, 173-181
Herbert and Wingard 6, 95-102
Herendorn and Braidech 6, 103-116
Hogberg 4, 151-156
Hole 10, 1-5
Krueger 5, 91-103
Kuff 20, 73-79
Masters 23, 71-81
McDonald 7, 29-33
Siebert 5, 43-54
Stewart 5, 55-69
Teporodei 18, 173-181
Webb 5, 23-42
Saskatchewan
Broughton 11, 7-15
Dunn, C.E. 11, 51-60
McLaughlin 19, 128-135
scoria
Osborn 17, 57-59
Scotland
Browne and Hull 20, 141-152
scrubbing
See desulfurization
sea water
McIlhenny 4, 35-44
sedimentary fractionation
Bates, R.L. 7, 13-16
serpentinite
Cox 22, 49-61
shale
See also oil shale
Hudec 14, 70-80
Mackie 15, 42-46
McCormick 8, 23-35
Sorensen 6, 143-155
silica sand and sandstone
Bentzen 15, 63-74
Bowdish 3, 126-131; 13, 36-43
Carr, Ault and Thompson 23, 35-40
Coltas 19, 118-121
Cooke 22, 112
Eyre and Eyre 21, 123-127
Heinrich 14, 106-112
Hoagberg and Koerner-Moore 16, 17-28
Hunnisett and Didawick 13, 44-46
Minster 19, 209-216
Olson, N.K. 5, 3-22
Peterson, P.M. 11, 93-97
Sevorn 5, 119-137
Shufflebarger 13, 25-35
Sweet 20, 11-22
Watson 19, 122-127
Zdunczyk 19, 168-174; 23, 101-103
slag
Segall 6, 117-126
slate
Berkheiser 20, 23-33
O'Connor 23, 91-95
soapstone
 Ferns 25, 11-13
soda ash
 Mannion 11, 1-5
sodium sulfate
 Broughton 11, 7-15
 Slezak and Last 20, 105-115
South Carolina
 Gross and Nelson 24, 150
 Harding and Noakes 12, 37-43
 Kennedy 24, 151
 Maybin and Carpenter 24, 57-69
 McKee 24, 152
 Mittwede 24, 75-82
 Nelson et al. 24, 83-93
 Patrick 24, 153
 Zupan 24, 154-155
South Dakota
 Hoagberg and Edwards 14, 87-96
spodumene
 Spanjers 24, 115-119
state geological survey
 Rooney 1, 101-110
 Weaver, K.W. 2, 1-11
statistical analysis
 West et al. 3, 10-25
sulfur
 Barron et al. 23, 11-20
 Myers, J.C. 4, 57-65
 Taylor, R.E. 4, 69-79
sulfur dioxide emissions
 See desulfurization
Superconducting Supercollider
 Curran and Masters 24, 49-56
syenite
 Morris, E.M. 22, 113
symposium
 Socolow et al. 5, 259-271
talc
 Bourbon 17, 77-84
 Ferns 25, 11-13
 Mittwede 24, 75-82
 Olson, R.H. 11, 99-143
 Taylor and Parmentier 19, 43-45
technical ceramics
 Hart 15, 51-52
Tennessee
 Zdunczyk 19, 168-174
Texas
 Bourbon 17, 77-84
 Bowie et al. 21, 90-105
 Daugherty 17, 85-88
 Eifler 4, 45-56
 Fisher and Rodda 8, 52-75
 McBride 22, 31-36
 Scott 4, 129-150
thermal sensing
 Carr and Webb 3, 32-38
trace elements
 Tourtelot and Boernge 16, 59
thrust sheets
 Nelson et al. 24, 83-93
transportation
 Anderson, Richard J. 2, 167-172
 Harben 19, 148-155
 Hudec et al. 6, 87-94
 Liba 5, 243-255
 Shrode 1, 110-115
tripoli
 Quirk and Bates 13, 47-50
trona
 Mannion 11, 1-5
 Twin Cities Metropolitan Area
 Hoagberg 23, 41-45
underground mining
 Aughenbaugh et al. 10, 17-24
 Baxter 23, 21-28
 Loofbourow 18, 245-251
underground space
 Whitfield 16, 43-52
United Kingdom
 Mason 9, 10-22
urban problems
 Browne and Hull 20, 141-152
 Kuff 20, 73-79
 Mikulic and Goodwin 20, 125-131
Utah
 Tripp 21, 31-36
vermiculite
 Bush 11, 145-155
 Maybin and Carpenter 24, 57-69
Vermont
 Meade 14, 54-56
vibration
 Bolton 14, 119
Virginia
 Sharpe 20, 41-49
 Sweet 18, 157-171; 20, 11-22
 and 59-68; 22, 37-48; 24, 129-135; 25, 92-95
volcanic rocks
Asher-Bolinder 17, 73
Hess 3, 177-183
Osburn 17, 57-59
Taylor, C.L. 14, 81-86
Welty and Spencer 21, 106-115

volcanism
Lowe 7, 217-226

Washington
Joseph 25, 24-30

waste materials
Leonard 10, 10-12
Minnick 10, 94-100
Robnett 18, 199-211

well stimulation
Hoagberg and Koerner-Moore 16, 17-28

Wisconsin
Odom et al. 6, 37-47

Wyoming
Hausel and McCallum 15, 106-115
Mannion 11, 1-5

X-ray diffraction
Hughes and Warren 23, 47-57

X-ray emission
Bobrowski 2, 149-154
Wheeler 3, 76-96

zeolites
Bowie et al. 21, 90-105
Eyde 17, 65-71
---- and Eyde 21, 133
Gude 15, 105
Holmes 22, 112; 25, 79-88
Leppert 25, 19-23
Santini and Shapiro 17, 108
Sheppard 11, 69-84

zoning
Dow 3, 152-155
Dunn, J.R. et al. 14, 3-5
Kuff 20, 73-79
Pennington 14, 6-12
AUTHOR INDEX

Numbers in bold face refer to Proceedings volumes.

Adams, J.K. 7, 211-216
Allen, G.E. see Socolow, A.A.
Allen, Gerald see Miller, J.R.
Allen, H. 16, 1-3
Ames, J.A. 1, 131-136
Anderson, Raymond J., and Egleson, G.C. 6, 15-19
-------------------------, and Majeske, E.C. 6, 34-36
Anderson, Richard J. 2, 167-172
Angino, E.E. 3, 120-124
Arbingast, S.A. 4, 95-98
Asher-Bolinder, S. 17, 73-76
Atkins, R.L., and Power, W.R. 12, 6-9
------------------------, and Lounsbury, R.W. 1, 179-187
Ault, C.H. 22, 17-29. See also Carr, D.D.; Rooney, L.E.
----------------------, and Haumesser, A.F. 24, 1-8
Austin, G.S. see Weber, R.H.
-----------------------, Kottkowski, F.E., and Siemers, W.T. 17, 9-16
Austin, R.S. 12, 10-15
Back, W. see Hanshaw, B.B.
Baker, D.H. jr. 12, 16-24
Banino, G.M. 14, 65-69
--------, and Crist, W.K. 19, 206-208
Bargh, B.L. see Hughes, R.E.
Barker, J.M. see Bowie, M.R.
--------, and Harris, M.J. 25, 63-68
--------, and McKee, C. 25, 51-62
Barnard, F. 23, 5-10
Barron, L.S., Dever, G.R., jr., and Robl, T.L. 23, 11-20
Bartlett, H.F. see Grogan, R.M.
Bates, A.K. see Quirk, W.F.
Bates, R.L. 1, 98-100; 2, 23-29; 3, 45-50; 7, 13-16; 8, 5-10
Baxter, J.W. 23, 21-28
Bearden, S.D. 24, 9-12, 13-15
Beatty, W.B. 11, 85-92
Beck, K.C. see Weaver, C.E.
Beckman, R.J. 17, 35-37
Bell, H. III see Nelson, A.E.
Bennett, E.H., McNary, S.W., Lowe, N.T., Neumann, T.R., Rains, R.L.,
Zilka, N.T., Mayerle, R.T., Leszczkowski, A.M., Olson, J.E., and
Gabby, P.N. 25, 31-36
Bentzen, E.H. 115, 63-74; 25, 89-91
Berendsen, P. 24, 17-24
Berg, R.H. 25, 37-44
Berkeiser, S.W., jr. 20, 23-33
Berlanga, E. see Ruiz, J.
Bhagwat, S.B. 20, 133-139; 23, 29-34
Biggs, D.L. 2, 101-110
Blakely, R.F. see Carr, D.D.
Bobrowski, C.S. 2, 149-154
Boeruge, J.C. see Tourtelot, H.A.
Bolton, C.L., jr. 14, 119
Bourbon, W.B. 17, 77-84
Bourne, H.L. 6, 138-141
Bowdish, F.W. 3, 126-131; 13, 36-43
Bradley, W.F. see Land, L.S.
Braidech, L.L. see Herdendorf, C.E.
Brewer, J.E. 1, 188-191
Briggs, L.I. 6, 66-76
----------------, and Zigic-Toshich, D. 4, 99-115
Bristow, C. 24, 25-37
Brobst, D.A. 12, 1-5; 16, 77
Brookes, J.R. 20, 69-72
Brooks, H.C. 25, 8-10
Broughton, P.L. 8, 135-158; 11, 7-15
Brown, C.E. 14, 97-105
Brown, H.J. 21, 44-54
Brown, S.P. 1, 123-130. See also Hudc, P.P.
Browne, M.A.E., and Hull, J.H. 20, 141-152
Bryan, D.P. 21, 55-63
Buie, B.F. 7, 103-107
Burke, K. 14, 120
Burleson, C.E. 15, 8-10
Bush, A.L. 11, 145-155
Bush, W.V. see Stone, C.G.
Buyce, M.R., and Dunn, J.R. 14, 34-39
Callahan, J.E., and Craig, J.R. 24, 39-44
Callender, E. 6, 56-65
Cameron, E.N. 22, 1-10
Campbell, I. 3, 2-6
Carpenter, A.B. 13, 60-77
----------------, and Trout, M.L. 13, 78-88
Carpenter, R.H. see Maybin, A.H. III
----------------, and Aston, R.L. 24, 149
Carr, D.D. see Jorgensen, D.B.
--------, and Ault, C.H. 18, 11-25
--------, Ault, C.H., and Thompson, T.A. 23, 35-40
--------, French, R.R., and Blakely, R.F. 6, 127-137
--------, and Webb, W.M. 3, 32-38
Carver, R.E. 7, 91-101
Castor, S.B. 25, 73-78
Cathcart, J.B. 4, 23-34
Cathcart, R.S. 18, 223-229
Chase, E. see Shefchik, W.T.
Cherry, M.E. see Vos, M.A.
Christiansen, C.R. see Augenbuagh, N.B.
Clabaugh, P.S. see Muehlberger, W.R.
Cleveland, J.H. see Vitaliano, C.J.
Coates, W.E. 6, 5-14
Collins, A.G. 13, 95-98
Coltas, P.C. 19, 118-121
Congleton, B. 7, 185-186
Connor, J.M. 24, 45-48
Cooke, J. 22, 112
Cooper, A.J., and Plewman, R. 18, 231-244
Cooper, B.N. 1, 146-152
Cotten, H.M. 13, 89-94
Couto, P.A. see Goudarzi, G.H.
Cox, T.L. 22, 49-61
Coxey, J.R. see Socolow, A.A.
Craig, J.R. see Callahan,J.E.
Crowe, J.L. 10, 53-58
Cueman, E.R. see Dunn, J.R.
Cutcliffe, W.E. 5, 105-117
--------------, and Dunn, J.R. 3, 39-44
Czel, L.J. see Grogan, R.M.
Dailey, H.W. see Pickering, S.M. Jr.
Dang, V.-D., and Steinberg, M. 13, 99-107
Danner, W.R. 11, 157-169, 171-186
Daugherty, F.W. 17, 85-88
Demicco, R.V. 20, 51-58
De Souza, C.H. see Goudarzi, G.H.
Deul, M. 10, 43-46
Dever, G.R. Jr. see Barron, L.S.; McGrain, P.
--------------, and McGrain, P. 7, 171-179
--------------, Moody, J.R., and Robl, T.L. 20, 87-93
Didawick, G.H. see Hunnisett, R.A.
Dineen, R.J. see Fickies, R.H.
Dorheim, F.H. 2, 73-82
Dow, V.E. 3, 152-155; 8, 131-134
Dragonetti, J.J. see Trautwein, B.
Drehmel, D.C., and Harvey, R.D. 10, 59-66
DuCharme, P.J. 3, 132-137
Duewel, D.B., and McFarlane, M.J. 16, 71-76
Dunn, G.C. 11, 51-60
Dunn, G.C. 11, 185-189; 18, 1-9; 21, 1-8. See also Buyce, M.R.; Cutcliffe, W.E.; Hudec, P.P.; Socolow, A.A.
--------------, Cueman, E.H., and Preston, C.M. 14, 3-5
--------------, and Hudec, P.P. 1, 153-168
--------------, and Wallace, W.A. 5, 153-163

Edwards, G.H. see Hoagberg, R.K.
Edwards, W.A.D., and Hudson, R.B. 19, 136-143
Egleson, G.C. see Anderson, Raymond J.
Eifler, C.K., Jr., 4, 45-56
El-Askary, M.A. see El-Mahdy, O.R.
El-Mahdy, O.R., and El-Askary, M.A. 18, 43-60
Engdehl, R.B. see Frazier, N.A.
Everett, R.W. 17, 31-33
Everett, F.D. 3, 156-161

34
Eyde, D.T. see Eyde, T.H.
Eyde, T.H. 17, 65-71
----------, and Eyde, D.T. 21, 123-127, 133

Fakundiny, R.H. 14, 40-52
Farris, C.B. 15, 96-104
Fernau, E.A. 14, 32-33
Ferns, W.L. 25, 11-13
Fickies, R.H., and Dineen, R.J. 14, 13-20
Fields, D.W. 7, 5-8
Fisher, W.L., and Rodda, P.U. 3, 52-75
Fleischig, J. 25, 69-72
Force, E.R. see Stone, B.D.
Ford, C.T. 10, 30-42
Fountain, R.C., and Zellars, M.E. 7, 187-193
Fowler, B.K. 19, 180-184
Fraser, G.S. 18, 27-42
Frazier, N.A., Engdahl, R.B., Genco, J.M., Rosenberg, H.S., and Oxley, J. H. 10, 81-89
French, R.R. see Carr, D.D.
Frost, R.R. see Harvey, R.D.
Furlow, J.W. 7, 227-228

Gabby, P.N. see Bennett, E.H.
Gale, F.C. see Burton, L.A.
Galla, O.K. 3, 97-109
Garland, T.M. 13, 59
Garnar, T.E., Jr. 7, 17-21; 12, 25-36
Geitgey, R.P. 24, 149; 25, 1-7
Genco, J.M. see Frazier, N.A.
Giardini, A.A. see Salotti, C.A.
Gibson, R.C. see Martin, N.W.
Golson, G. 15, 75-76
Goodwin, J.H. see Mikulic, D.G.
----------, and Masters, J.M. 18, 61-90
Goudarzi, G.H. 17, 27-30
Gray, J.H., and Pyron, A.J. 22, 107-111
Gray, J.J. 25, 14-18
Grim, R. 23, 1-4
Grisafe, D.A. 18, 91-112
Griswold, G.B. 17, 17-22
Grogan, R.M., Cunningham-Dunlop, P.K., Bartlett, H.F., and Czel, L.J. 9, 4-9
Grosz, A.F., and Nelson, D.D. 24, 150
Grott, J. 21, 120-122
Grube, W.E., Jr. see Smith, R.M.
Gude, A.J., III 15, 105
Guillet, G.R. 14, 21-26

Hall, R.B. 15, 77-88
Hamilton, W.N. 11, 17-35
Hanshaw, B.B., and Back, W. 7, 139-153
Harben, P.W. 19, 148-155

35
Mason, J.E. 9, 10-22
Masters, J.M. 23, 71-81. See also Curran, L.M.; Goodwin, J.H.
Matthews, R.D. 6, 20-33
Maybin, A.H., III, and Carpenter, R.H. 24, 57-69
Mayerle, R.T. see Bennett, E.H.
McAnulty, W.N., sr. 4, 91-94
McBride, M.W. 22, 31-36
McCarr, H.N. 24, 71-73. See also Schenck, C.H.K.
McCormick, G.R. 8, 23-35
McDonald, H. 7, 29-35
McFarlane, M.J. see Duewel, D.B.
McGowen, J.H. 4, 157-174
McGrain, P. 18, 127-142. See also Dever, G.R. jr.
---------, and Dever, G.R. jr. 2, 31-44
McIlhenny, W.F. 4, 34-44
McKee, C. see Barker, J.M.
McKeel, S.L. 24, 152
McLaughlin, G. 19, 128-135
McNary, S.W. see Bennett, E.H.
Meade, L.P. 5, 225-231; 12, 54-56; 14, 54-56; 24, 152
Mikulic, D.G. 23, 83-89
---------, and Goodwin, J.H. 20, 125-131
Miller, C.G. 19, 60-64
Miller, J.R., Ramanjaneya, G., and Allen, G. 21, 129
Minnes, G. 19, 13-19
Minnick, L.J. 10, 94-100. See also Socolow, A.A.
Minster, T. 19, 209-216
Mitchell, A.W. 22, 77-86
Mitchell, R. 2, 155-162
Mittwede, S.K. 24, 75-82
Montgomery, G. 9, 1-3
Moodie, F.B., III, and McGrain, P. 9, 96-107
Morris, D. 21, 131-132
Morris, E.M. 22, 112, 113
---------, and Stone, C.G. 22, 113
Muehlberger, W.R., and Clabaugh, P.S. 4, 81-89
Müller, P. see Lorenz, W.
Muts, E. see Land, L.S.
Myers, J.C. 4, 57-65
Myers, J.D. 8, 17-21
Nantel, S. 19, 96-108
---------, 24, 83-93
Nelson, D.D. see Grosz, A.E.
Neumann, T.R. see Bennett, E.H.
Nielsen, I. 15, 89-95
Noakes, J.E. see Harding, J.L.
Nordwald, R.R. 16, 53-57
O'Connor, B.J. 23, 91-95; 24, 95-110
Olson, J.E. see Bennett, E.H.
Olson, N.K. 5, 3-22; 7, 195-210

38
Olson, R.H., 11, 99-143
O'Neill, B.J. 14, 113-118
Osborne, R.V., and Toung, G.D. 14, 53
Osburn, J.C. 17, 57-59
Oxley, J.H. see Frazier, N.A.
Ozol, M.A. 2, 111-128

Palacas, J.G. see Swain, F.M.
Papke, K.G. 21, 24-30
Parmentier, C.J. see Taylor, D.K.
Patrick, J., jr. 24, 153
Patterson, S. 7, 37-49
Paton, J.B. 4, 3-6
Peirce, H.W. 21, 17-23. See also Reynolds, S.J.
Pennington, D. 14, 6-12
Pentecost, J.L. 12, 57-58
Peterson, P.M. 11, 93-97
Peterson, S.L. see Bowie, J.M.
Pickard, G.W. 9, 23-30
Plewman, R. see Cooper, A.J.
Plout, T.J. 17, 108
Power, W.R. 12, 59-68
Preston, C.M. see Dunn, J.R.
Pyron, A.J. see Gray, J.H.

Quirk, W.F., and Bates, K.A. 13, 47-50

Radcliffe, D. 12, 69-78
Rains, J.W. 21, 134
Rains, R.L. see Bennett, E.H.
Ramanjaneya, G. see Miller, J.R.
Redeker, I.H. 24, 111-113
Regis, A.J. 14, 1-2; 15, 1-7
Rempe, N.T. 17, 23-26
Renard, L.P. 22, 114
Reynolds, S.J., and Peirce, H.W. 21, 9-16
Rhodes, J.A. 11, 61-67
Riggs, S.R. see Freas, D.H.
Roberts, K.C. see Shackleton, R.D.
Robl, T.L., see Barron, L.S.; Dever, G.R., jr.
Robnett, Q.L. 18, 199-211
Rodda, P.V. see Fisher, W.L.
Rogers, C. 19, 185-205
Rooney, L.E. 1, 101-110; 2, 13-21; 6, 2-3; 8, 1-4
----------, and Ault, C.H. 5, 179-224
Rosenberg, H.S. see Frazier, N.A.
Ross, M. 21, 83-89
Rostam-Abadi, H., and Sresty, G.C. 23, 105
Ruoff, A.W. 23, 97-100
Ruiz, J., and Berlanga, E. 21, 128
Renvik, R.C. 8, 159-183
Rupert, F.R. see Spencer, S.M.
Stone, B.D., and Force, E.R. 14, 57-64
Stone, C.G. see Holbrook, D.F.; Howard, J.M.; Morris, E.M.; Steuart, C.T.
---------, and Bush, W.V. 22, 87-106
Stroud, R.B. 22, 115
Swain, F.M., Palacas, J.G., and Kraft, J.C. 1, 116-123
Sweeney, J.W. 7, 9-11
-------------, and Timmons, B.J. 8, 89-97
Sweet, P.C. 18, 157-171; 20, 11-22 and 59-68; 22, 37-48; 24, 129-135; 25, 92-95
Swindle, G.F. 23, 105
Taranik, J.V. 8, 99-105
Taylor, C.L. 14, 81-86
Taylor, D.K., and Parmentier, C.J. 19, 43-45
Taylor, R.E. 4, 69-79
Tepordei, V.V. 18, 173-181
Thomas, J., jr. see Harvey, R.D.
Thompson, T.A. see Carr, D.D.
Tibbs, J.S. 9, 87-95
Timmons, B.J. 16, 29-32; 24, 137-143. See also Sweeney, J.W.; Wahl, F.M.
Toung, G.D. see Osborne, R.V.
Tourtelot, H.A., and Boernge, J.C. 16, 59
Trace, R.D. 9, 58-76
Trautwein, B., and Dragonetti, J.J. 14, 27-31
Tripp, B.T. 21, 31-36
Trout, M.L. see Carpenter, A.B.
Vanderveer, D.G. 19, 65-78
Van Horn, R.G. see Stith, D.A.
Vitaliano, C.J., and Cleveland, J.H. 2, 173-197
Vos, M.A., Springer, J.S., and Cherry, M.E. 19, 9-12
Wahl, F.M., and Timmons, B.J. 7, 109-116
Wark, J.C. 15, 53-62
Warren, R.L. see Hughes, R.E.
Watson, D.M. 19, 122-127
Weaver, C.E., and Beck, K.C. 7, 51-90
Weaver, J.L. 7, 181-184
Weaver, K.W. 2, 1-11
Webb, H.L. see Pickering, S.M., jr.
Webb, W.M. 5, 23-42. See also Carr, D.D.
Weber, R.H., and Austin, G.S. 17, 97-101
Welty, J.W., and Spencer, J.E. 21, 106-115
West, T.R., Smith, N.M., and Johnson, R.B. 3, 10-25
Westphal, E.B. 13, 20-24
Wharton, H.M. 8, 107-119. See also Martin, J.A.
Wheeler, B.D. 3, 76-96
White, D.H. jr. 24, 145-147
White, O.L. 15, 23-28; 19, 1-8
White, W.A. see Hughes, R.E.
Whitfield, J.W. 16, 43-52
Whitson, D. 17, 89-95
Wilband, J.T., and Kneller, W.A. 3, 111-119
Wingard, N.E. see Herbert, T.A.
Wood, G.E. 19, 46-48
Wood, S.O., jr. see Hawkins, M.E.
Worl, R.G. 9, 31-54

Yon, J.W. see Spencer, S.M.
Yundt, S.E. 15, 11-22; 19, 33-42

Zdunczyk, M. 19, 168-174; 23, 101-103
Zellers, M.E. see Fountain, R.C.
Zierold, A.D. 22, 115
Zigic-Toshich, D. see Briggs, L.I.
Zilka, N.T. see Bennett, E.H.
Zupan, A.-J.W. 24, 154-155
<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Year</th>
<th>Address Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Columbus, 1965</td>
<td>Department of Geology, Ohio State University, 125 South Oval Mall, Columbus, OH 43210.</td>
</tr>
<tr>
<td>3</td>
<td>Lawrence, 1967</td>
<td>Kansas Geological Survey, 1930 Constant Avenue, West Campus, University of Kansas, Lawrence, KS 66046.</td>
</tr>
<tr>
<td>4</td>
<td>Austin, 1968</td>
<td>Texas Bureau of Economic Geology, Box X, University Station, Austin, TX 78713.</td>
</tr>
<tr>
<td>5</td>
<td>Harrisburg, 1969</td>
<td>Pennsylvania Topographic and Geologic Survey, Box 2357, Harrisburg, PA 17105.</td>
</tr>
<tr>
<td>8</td>
<td>Iowa City, 1972</td>
<td>Iowa Geological Survey, 123 North Capitol Street, Iowa City, IA 52242.</td>
</tr>
<tr>
<td>10</td>
<td>Columbus, 1974</td>
<td>Department of Geology, Ohio State University, 125 South Oval Mall, Columbus, OH 43210, and Ohio Division of Geological Survey, 4383 Fountain Square Drive, Columbus, OH 43224-1362.</td>
</tr>
<tr>
<td>12</td>
<td>Atlanta, 1976</td>
<td>Georgia Geological Survey, 10 Martin Luther King Jr. Drive SW, Atlanta, GA 30334.</td>
</tr>
<tr>
<td>16</td>
<td>St. Louis, 1980</td>
<td>Missouri Division of Geology and Land Survey, Box 250, Rolla, MO 65401, and University of Missouri - Rolla.</td>
</tr>
<tr>
<td>18</td>
<td>Bloomington, 1982</td>
<td>Indiana Geological Survey, 611 North Walnut Grove, Bloomington, IN 47405, and Indiana University.</td>
</tr>
<tr>
<td>22</td>
<td>Little Rock, 1986</td>
<td>Arkansas Geological Commission, 3815 West Roosevelt Road, Little Rock, AR 72204.</td>
</tr>
<tr>
<td>23</td>
<td>North Aurora, 1987</td>
<td>Illinois State Geological Survey, Natural Resources Building, 615 East Peabody Drive, Champaign, IL 61820.</td>
</tr>
<tr>
<td>24</td>
<td>Greenville, 1988</td>
<td>South Carolina Geological Survey, 5 Geology Road, Columbia, SC 29210-9998.</td>
</tr>
<tr>
<td>25</td>
<td>Portland, 1989</td>
<td>Oregon Department of Geology and Mineral Industries, 910 State Office Building, 1400 SW Fifth Avenue, Portland, OR 97201-5528.</td>
</tr>
</tbody>
</table>