The tsunami scenarios presented on this map can be found in DOGAMI Maximum Scenarios. The Maximum scenario is selected as the worst-case distant tsunami event. This maximum selected source location on the Aleutian chain of islands also shows this same model used by the U.S. Geological Survey (USGS) in its tsunami simulations. The Maximum scenario represents a hypothetical maximum event. This maximum tsunami is the same model used by the USGS in its tsunami simulations for the two Alaska tsunami scenarios over an 8-hour period. Wave heights vary through time, and the first wave will not necessarily be the largest.

The tsunami scenarios are modeled to occur at a static (no flow) tide and equal to the Mean Higher High Water contour lines that form the extent of inundation. The transition area between dry and wet/dry locations is shown in yellow on this map. The Maximum Wet/Dry Zone is shown on this map. The greatest tsunami damage in Oregon did not occur near coastal towns, but instead were in more inland locations. The greatest damage was caused by tsunamis associated with subduction zones that eventually release energy in the form of an earthquake. These tsunamis are generated by one side of a plate running beneath another thicker, lighter plate that interferes and reflects off local topography and bathymetry.

Buildings within Tsunami Inundation Zones

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

Buildings within Tsunami Inundation Zones

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.

The computer simulation model output is provided to DOGAMI as a set of computer model products that include: Time Series Graphs and Wave Elevation Profiles, Tree Damage, Building Damage, Buildings within Tsunami Inundation Zones, and Maximum Water Elevation Profiles. The computer model produces time series data for each assigned values ranging from 0 to 100 to estimate the percentages of buildings and trees damaged by the tsunami inundation.