occurring over the next 30 years is 10% and that such earthquakes years, with a median time interval of 490 years. In 2008 the United recent CSZ event happened approximately 300 years ago on January displacement of water that creates a tsunami (Figure 2). Similar Plate and the Juan de Fuca Plate (Figure 1). These plates are The CSZ is the tectonic plate boundary between the North American earthquake and tsunami. of tsunami inundation maps to help residents and visitors along the National Tsunami Hazard Mitigation Program, which has been identifying and mapping the tsunami inundation hazard has been Extra Large (S, M, L, XL, XXL). The map legend depicts the respective hazard mitigation and response, the five scenarios are labeled as “T- of the splay fault. Each scenario assumes that a tsunami occurs at high tide and to account for local subsidence or uplift of the tsunami scenarios, the computer model produces time series data for establishes the area of expected tsunami inundation based on scientific magnitude for these five scenarios. Figure 4 shows the cumulative number of buildings inundated within the map area. The tsunami scenarios are modeled to occur at high tide and to account for local subsidence or uplift of the tsunami scenarios. The tsunami scenarios are modeled to occur at high tide and to account for local subsidence or uplift of the tsunami scenarios. The tsunami scenarios are modeled to occur at high tide and to account for local subsidence or uplift of the tsunami scenarios. The tsunami scenarios are modeled to occur at high tide and to account for local subsidence or uplift of the tsunami scenarios. These plates are years, with a median time interval of 490 years. In 2008 the United recent CSZ event happened approximately 300 years ago on January displacement of water that creates a tsunami (Figure 2). Similar Plate and the Juan de Fuca Plate (Figure 1). These plates are The CSZ is the tectonic plate boundary between the North American earthquake and tsunami. of tsunami inundation maps to help residents and visitors along the National Tsunami Hazard Mitigation Program, which has been identifying and mapping the tsunami inundation hazard has been Extra Large (S, M, L, XL, XXL). The map legend depicts the respective hazard mitigation and response, the five scenarios are labeled as “T- of the splay fault. Each scenario assumes that a tsunami occurs at high tide and to account for local subsidence or uplift of the tsunami scenarios, the computer model produces time series data for establishes the area of expected tsunami inundation based on scientific magnitude for these five scenarios. Figure 4 shows the cumulative number of buildings inundated within the map area. The tsunami scenarios are modeled to occur at high tide and to account for local subsidence or uplift of the tsunami scenarios. The tsunami scenarios are modeled to occur at high tide and to account for local subsidence or uplift of the tsunami scenarios. The tsunami scenarios are modeled to occur at high tide and to account for local subsidence or uplift of the tsunami scenarios. The tsunami scenarios are modeled to occur at high tide and to account for local subsidence or uplift of the tsunami scenarios. These plates are