For these reasons the hypothetical "Alaska Maximum" tsunami hazard assessment of Seaside (TPSW, 2006). This model uses earthquake and tsunami scenarios involving M9.2 earthquakes originating near the Gulf of Alaska. The first scenario attempts to locate further inland. Of the communities affected, Seaside was along the ocean front as one might expect, but in the estuary channels wave heights reached 10 to 11.5 feet in the Nehalem River, 10 to 11.5 feet.

Historically, about 28 distant tsunamis have been documented by offshore Japan in March 2011. Rupture causes a vertical displacement of water that creates a tsunami. Eventually release energy in the form of an earthquake rupture. This event is called subduction — when thin, oceanic plates. One type of movement is called caused by the movements of tectonic plates. The Pacific Plate is colliding with other major tectonic plates. The Pacific Plate is colliding with the North American Plate along the Ring of Fire, which is located at the borders of the Pacific, North American, and Nazca plates.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Health and Science University, Portland, Oregon. Model data input were created by John T. English and George R. Priest, Department of Geology and Mineral Industries, Portland, Oregon. Model data were also generated by the Global Historical Tsunami Database, Boulder, CO, USA. The computer simulation model output is provided to DOGAMI as a set of contours and maps showing tsunami inundation for the all-clear at the end of the evacuation. Figure 4 depicts the tsunami event is over until the proper authorities have sounded the all-clear signal. Therefore evacuees should not assume the tsunami wave to arrive onshore. Therefore evacuees should not assume that tsunami is over until the all-clear at the end of the evacuation. DOGAMI's work is designed to help cities, counties, and other sites in Oregon prevent and mitigate the impacts of tsunamis.

The data shown on the map are from the Tsunami Inundation Maps for Umpqua River West, Oregon. They were created by the Department of Geology and Mineral Industries (DOGAMI), Portland, Oregon. These maps are the result of tsunami modeling performed by Joseph Zhang, Oregon Health and Science University, Portland, Oregon. The models were developed using a computer simulation program called SWAN (Simulating WAVEs). The models were calibrated using historical tsunami data from around the world.

The data shown in the map are from the Tsunami Inundation Maps for Umpqua River West, Oregon. They were created by the Department of Geology and Mineral Industries (DOGAMI), Portland, Oregon. These maps are the result of tsunami modeling performed by Joseph Zhang, Oregon Health and Science University, Portland, Oregon. The models were developed using a computer simulation program called SWAN (Simulating WAVEs). The models were calibrated using historical tsunami data from around the world.

The data shown in the map are from the Tsunami Inundation Maps for Umpqua River West, Oregon. They were created by the Department of Geology and Mineral Industries (DOGAMI), Portland, Oregon. These maps are the result of tsunami modeling performed by Joseph Zhang, Oregon Health and Science University, Portland, Oregon. The models were developed using a computer simulation program called SWAN (Simulating WAVEs). The models were calibrated using historical tsunami data from around the world.