Improved Road (USGS) released the results of a study announcing that the probability of an earthquake occurred off the Oregon coast over the past 10,000 years (Figure 3). All Plate. This rupture causes a vertical displacement of water that creates a tsunami.

The CSZ is the tectonic plate boundary between the North American Plate and the Juan de Fuca Plate. This megathrust earthquake and tsunami are primarily driven by the amount and geometry of the slip on this plate boundary. Using federal funding awarded by NOAA, DOGAMI has developed a new dataset to reduce the potential for disastrous tsunami-related consequences by understanding and mitigating this geologic hazard.

Introduction

In addition to the recent increase in the amount of vertical displacement of the Pacific Ocean floor, other aspects of hazard mitigation and response, the five scenarios are labeled "Big Earthquake," "Medium Earthquake," "Small Earthquake," "Explosion," and "No Tsunami." These scenarios are based on the likelihood of occurrence, relative size, and the resulting tsunami inundation from each event. The computer simulation model output is provided to DOGAMI as a tool to help assess the potential impacts of each event.

This tsunami inundation map displays the output of computer models that simulate the impact of a Cascadia Subduction Zone earthquake. The map shows the predicted tsunami inundation zones along the Oregon coast, which are highlighted in various colors. The map also includes regulatory tsunami inundation lines, which are designated by the Oregon State Department of Fish and Wildlife (ODFW). The map is designed to help cities, counties, and other sites in coastal areas reduce the potential for disastrous tsunami-related consequences by understanding and mitigating this geologic hazard.

The computer simulation model output is provided to DOGAMI as a tool to help assess the potential impacts of each event.