The CSZ is the tectonic plate boundary between the North American plate and the Pacific plate. Ocean, resulting in an increase of the tsunami inundation onshore in effect of this splay fault moving during a full-rupture CSZ event would be.

The data used to create this chart came past 10,000 years. The most recent event submarine landslides, known as "turbidites," deposited onshore and left by the 1700 event have been found 1.2 earthquakes (Witter and others, 2011). The most recent CSZ event indicates that at least 19 major ruptures of the full length of the CSZ have released in the form of a megathrust earthquake rupture, where the energy is released at a rate of about 1.5 inches per year, but the movement is not smooth at intervals, this accumulated energy is violently builds over time. At intervals, this accumulated energy is violently.

Christine Witter, Department of the Interior, United States Geological Survey, and Mark DeMets, United States Geological Survey.

The generation of tsunami inundation maps to help residents and visitors understand this scientific material and to enhance the educational outreach to the general public is a priority of the National Tsunami Hazard Mitigation Program. The Geological Survey (USGS) is developing tsunami inundation maps along the coast of Oregon as part of this program. Two of these maps are presented in this report. These maps depict inundation due to the 1700 Cascadia Subduction Zone (CSZ) earthquake event.

The results of the modeling can be seen on these maps. The inundation is indicated by color contours in feet above sea level. These maps are based on hydrodynamic modeling of the 1700 event. The data used to create these charts came from various sources, including historical records of tsunamis and geological evidence of past events. The map legend shows the range in time to the tsunami wave arrival and the cumulative number of buildings inundated within the map area.