Ocean, resulting in an increase of the tsunami inundation onshore in parallel to the CSZ but closer to the Oregon coastline (Figure 1). The fault geometries that could amplify the amount of seawater the Juan de Fuca Plate during a CSZ event. DOGAMI has modeled a wide tsunami are primarily driven by the amount and geometry of the slip 10% and that such earthquakes occur about every 500 years (WGCEP , estuaries 6 miles inland. As shown in Figure 3, the range in time occurred off the Oregon coast over the past 10,000 years (Figure 3). All indicates that at least 19 major ruptures of the full length of the CSZ have Sumatra in 2004, and offshore Japan in March 2011.

This rupture causes a vertical displacement of water that creates a North American Plate suddenly slips westward over the Juan de Fuca Plate. This splay fault. Each scenario assumes that a tsunami occurs at Mean "T-shirt sizes" ranging from Small, Medium, Large, Extra Large, to understand this scientific material and to enhance the educational rush in all directions.

HOW TSUNAMIS OCCUR

Because the two plates are stuck in place at Local Source (Cascadia Subduction Zone) Tsunami Inundation Map Newport South, Oregon

Map Explanation

SOURCES AND BEHAVIOR OF CASCADIAN SUBDUCTION ZONE MEGATHROTS EARTHQUAKES

Buildings within Tsunami Inundation Zones

Suggested Tsunami Wave Height through Times for Simulated Tsunami Station

Historical Water Erosion Profiles

Legend

Data References

DOGAMI Special Papers 41 (Priest and others, 2009) and 43 (Witter and Priest, 1995).

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.

This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Department of Geology and Mineral Industries Special Paper 43, 57 p.