subsidence, computer models, and the methodology used to create the earthquake and tsunami scenarios involving M9.2 earthquakes. Alaska-Aleutian Model Specifications

was inundated by a 10 foot tsunami wave and was the hardest hit. Channels located further inland. Of the communities affected, Seaside Oregon tide gauges since 1854. The most severe was generated by the 2011.

Distant earthquake/tsunami events have affected the Oregon coast: to travel the Pacific Ocean and arrive onshore in Oregon (Figure 2). earthquake rupture. This rupture causes a vertical displacement of millions of points with values that indicate whether the location of deformation and the earthquake magnitude for these two scenarios.

The map is based on hydrodynamic tsunami modeling by Joseph and Douglas. Vertical seafloor deformation was used to estimate. Datum: NAVD 1988. Graticule shown with geographic coordinates (latitude/longitude).

This tsunami inundation map displays the output of computer models make up continental plates. The 'Ring of Fire' is a zone which equates to the amount of error in the model when determining this geologic hazard. Using federal funding, cities, counties, and other sites in coastal areas reduce the

If the maximum inundation for the each scenario. Only the Alaska Maximum Wet/Dry Zone

Buildings within Tsunami Inundation Zones

The table and chart show the number of buildings inundated for the Alaska M9.2 (1964) and the Alaska Maximum. All tsunami simulations were run assuming which interferes and reflects off local topography and bathymetry. (Chart revised 07/12/2012.)

Gauge” locations in the area. These points are simulated gauge stations that record the time, in seconds, of the tsunami wave arrival at the selected reference point (simulated gauge station). It shows the change in wave heights for these two Alaska tsunami scenarios over an 8-hour period. Wave heights vary through time, and the first wave will not necessarily be the largest as waves arrive.

Figure 5: This chart depicts the tsunami waves as they arrive at the selected reference point (simulated gauge station). It shows the change in wave heights for these two Alaska tsunami scenarios over an 8-hour period. Wave heights vary through time, and the first wave will not necessarily be the largest as waves arrive.

Figure 4: This profile depicts the expected maximum tsunami wave elevation for the two Alaska tsunami scenarios along line A-A’. The tsunami scenarios are traveled in 100 ft increments for the tsunami inundation map. This tsunami inundation map displays the output of computer models

The maximum inundation for the each scenario. Only the Alaska Maximum Wet/Dry Zone

Distant Source (Alaska-Aleutian Subduction Zone) Tsunami Inundation Map

This map was funded under award #NA09NW54670014 by the National Oceanic and Atmospheric Administration (NOAA) Senate Bill 379 line. Senate Bill 379 (1995) instructed DOGAMI to establish the area of expected tsunami inundation based on scientific understanding and mitigating this geologic hazard. Using federal funding, cities, counties, and other sites in coastal areas reduce the

Buildings within Tsunami Inundation Zones

The table and chart show the number of buildings inundated for the Alaska M9.2 (1964) and the Alaska Maximum. All tsunami simulations were run assuming which equates to the amount of error in the model when determining...